from langchain.tools import BaseTool from typing import Type, List, Dict, Any from pydantic import BaseModel, Field from quantum.optimizer import optimize_treatment from services.logger import app_logger from services.metrics import log_tool_usage class QuantumOptimizerInput(BaseModel): patient_data: Dict[str, Any] = Field(description="Dictionary of relevant patient characteristics (e.g., {'age': 55, 'gender': 'male'}).") current_treatments: List[str] = Field(description="List of current medications or therapies (e.g., ['Aspirin 81mg', 'Metformin 500mg']).") conditions: List[str] = Field(description="List of diagnosed conditions (e.g., ['Type 2 Diabetes', 'Hypertension']).") class QuantumTreatmentOptimizerTool(BaseTool): name: str = "quantum_treatment_optimizer" description: str = ( "A specialized tool that uses quantum-inspired algorithms to suggest optimized treatment plans. " "Provide patient data, current treatments, and diagnosed conditions. " "Use this when seeking novel therapeutic strategies or to optimize complex polypharmacy." ) args_schema: Type[BaseModel] = QuantumOptimizerInput def _run(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> str: app_logger.info(f"Quantum Optimizer Tool called with: {patient_data}, {current_treatments}, {conditions}") log_tool_usage(self.name) try: result = optimize_treatment(patient_data, current_treatments, conditions) # Format result for LLM # Example: "Optimized suggestions: ..., Confidence: ..., Summary: ..." # You might want to pretty-print the dict or convert to a string summary return f"Quantum Optimizer Results: {result}" except Exception as e: app_logger.error(f"Error in QuantumTreatmentOptimizerTool: {e}") return f"Error during quantum optimization: {str(e)}" async def _arun(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> str: # For simplicity, using sync version for now return self._run(patient_data, current_treatments, conditions)