Update app.py
Browse files
app.py
CHANGED
|
@@ -1,128 +1,51 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import
|
| 3 |
-
|
| 4 |
-
from config import (
|
| 5 |
-
OPENAI_API_KEY,
|
| 6 |
-
OPENAI_DEFAULT_MODEL,
|
| 7 |
-
MAX_PUBMED_RESULTS
|
| 8 |
-
)
|
| 9 |
-
from pubmed_rag import (
|
| 10 |
-
search_pubmed, fetch_pubmed_abstracts, chunk_and_summarize,
|
| 11 |
-
upsert_documents, semantic_search
|
| 12 |
-
)
|
| 13 |
-
from models import chat_with_openai
|
| 14 |
from image_pipeline import analyze_medical_image
|
|
|
|
| 15 |
|
| 16 |
-
###############################################################################
|
| 17 |
-
# STREAMLIT SETUP #
|
| 18 |
-
###############################################################################
|
| 19 |
st.set_page_config(page_title="Advanced Medical AI", layout="wide")
|
| 20 |
|
| 21 |
def main():
|
| 22 |
-
st.title("Advanced Medical AI
|
| 23 |
-
|
| 24 |
-
st.
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
if not query.strip():
|
| 60 |
-
st.warning("Please enter a query.")
|
| 61 |
-
return
|
| 62 |
-
|
| 63 |
-
with st.spinner("Searching PubMed..."):
|
| 64 |
-
pmids = search_pubmed(query, max_art)
|
| 65 |
-
|
| 66 |
-
if not pmids:
|
| 67 |
-
st.error("No articles found. Try another query.")
|
| 68 |
-
return
|
| 69 |
-
|
| 70 |
-
with st.spinner("Fetching and Summarizing..."):
|
| 71 |
-
raw_abstracts = fetch_pubmed_abstracts(pmids)
|
| 72 |
-
# Summarize each
|
| 73 |
-
summarized = {}
|
| 74 |
-
for pmid, text in raw_abstracts.items():
|
| 75 |
-
if text.startswith("Error"):
|
| 76 |
-
summarized[pmid] = text
|
| 77 |
-
else:
|
| 78 |
-
summary = chunk_and_summarize(text)
|
| 79 |
-
summarized[pmid] = summary
|
| 80 |
-
|
| 81 |
-
st.subheader("Summaries")
|
| 82 |
-
for i, (pmid, summary) in enumerate(summarized.items(), start=1):
|
| 83 |
-
st.markdown(f"**[Ref{i}] PMID {pmid}**")
|
| 84 |
-
st.write(summary)
|
| 85 |
-
|
| 86 |
-
# Upsert into vector DB
|
| 87 |
-
upsert_documents(summarized) # store raw or summarized texts
|
| 88 |
-
|
| 89 |
-
# Build system prompt
|
| 90 |
-
system_prompt = "You are an advanced medical assistant with the following references:\n"
|
| 91 |
-
for i, (pmid, summary) in enumerate(summarized.items(), start=1):
|
| 92 |
-
system_prompt += f"[Ref{i}] PMID {pmid}: {summary}\n"
|
| 93 |
-
system_prompt += "\nUsing these references, provide an evidence-based answer."
|
| 94 |
-
|
| 95 |
-
with st.spinner("Generating final answer..."):
|
| 96 |
-
final_answer = chat_with_openai(system_prompt, query)
|
| 97 |
-
st.subheader("Final Answer")
|
| 98 |
-
st.write(final_answer)
|
| 99 |
-
|
| 100 |
-
def medical_image_analysis():
|
| 101 |
-
st.subheader("Medical Image Analysis")
|
| 102 |
-
uploaded_file = st.file_uploader("Upload a Medical Image (PNG/JPG)", type=["png", "jpg", "jpeg"])
|
| 103 |
-
if uploaded_file is not None:
|
| 104 |
-
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
| 105 |
-
if st.button("Analyze Image"):
|
| 106 |
-
with st.spinner("Analyzing..."):
|
| 107 |
result = analyze_medical_image(uploaded_file)
|
| 108 |
st.subheader("Diagnostic Insight")
|
| 109 |
st.write(result)
|
| 110 |
|
| 111 |
-
def vector_db_search_ui():
|
| 112 |
-
st.subheader("Semantic Search in Vector DB")
|
| 113 |
-
user_query = st.text_input("Enter a query to find relevant documents", "")
|
| 114 |
-
top_k = st.slider("Number of results", 1, 10, 3)
|
| 115 |
-
if st.button("Search"):
|
| 116 |
-
if not user_query.strip():
|
| 117 |
-
st.warning("Please enter a query.")
|
| 118 |
-
return
|
| 119 |
-
with st.spinner("Performing semantic search..."):
|
| 120 |
-
results = semantic_search(user_query, top_k=top_k)
|
| 121 |
-
st.subheader("Search Results")
|
| 122 |
-
for i, doc in enumerate(results, start=1):
|
| 123 |
-
st.markdown(f"**Result {i}** - PMID {doc['pmid']} (Distance: {doc['score']:.4f})")
|
| 124 |
-
st.write(doc["text"])
|
| 125 |
-
st.write("---")
|
| 126 |
-
|
| 127 |
if __name__ == "__main__":
|
| 128 |
main()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from pubmed_rag import search_pubmed, fetch_pubmed_abstracts, summarize_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from image_pipeline import analyze_medical_image
|
| 4 |
+
from models import chat_with_openai
|
| 5 |
|
|
|
|
|
|
|
|
|
|
| 6 |
st.set_page_config(page_title="Advanced Medical AI", layout="wide")
|
| 7 |
|
| 8 |
def main():
|
| 9 |
+
st.title("Advanced Medical AI")
|
| 10 |
+
st.sidebar.title("Features")
|
| 11 |
+
task = st.sidebar.selectbox("Choose a task:", ["PubMed Q&A", "Medical Image Analysis"])
|
| 12 |
+
|
| 13 |
+
if task == "PubMed Q&A":
|
| 14 |
+
st.subheader("PubMed Question Answering")
|
| 15 |
+
query = st.text_input("Enter your medical question:", "What are the latest treatments for diabetes?")
|
| 16 |
+
max_results = st.slider("Number of PubMed articles to retrieve:", 1, 10, 5)
|
| 17 |
+
|
| 18 |
+
if st.button("Run Query"):
|
| 19 |
+
with st.spinner("Searching PubMed..."):
|
| 20 |
+
pmids = search_pubmed(query, max_results)
|
| 21 |
+
if not pmids:
|
| 22 |
+
st.error("No results found. Try another query.")
|
| 23 |
+
return
|
| 24 |
+
|
| 25 |
+
with st.spinner("Fetching and summarizing abstracts..."):
|
| 26 |
+
abstracts = fetch_pubmed_abstracts(pmids)
|
| 27 |
+
summaries = {pmid: summarize_text(abstract) for pmid, abstract in abstracts.items()}
|
| 28 |
+
|
| 29 |
+
st.subheader("PubMed Summaries")
|
| 30 |
+
for pmid, summary in summaries.items():
|
| 31 |
+
st.write(f"**PMID {pmid}**: {summary}")
|
| 32 |
+
|
| 33 |
+
system_message = "You are a medical assistant with access to PubMed summaries."
|
| 34 |
+
user_message = query
|
| 35 |
+
with st.spinner("Generating answer..."):
|
| 36 |
+
answer = chat_with_openai(system_message, user_message)
|
| 37 |
+
st.subheader("AI-Powered Answer")
|
| 38 |
+
st.write(answer)
|
| 39 |
+
|
| 40 |
+
elif task == "Medical Image Analysis":
|
| 41 |
+
st.subheader("Medical Image Analysis")
|
| 42 |
+
uploaded_file = st.file_uploader("Upload a medical image (PNG/JPG):", type=["png", "jpg", "jpeg"])
|
| 43 |
+
if uploaded_file:
|
| 44 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
| 45 |
+
with st.spinner("Analyzing image..."):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
result = analyze_medical_image(uploaded_file)
|
| 47 |
st.subheader("Diagnostic Insight")
|
| 48 |
st.write(result)
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
if __name__ == "__main__":
|
| 51 |
main()
|