Update app.py
Browse files
app.py
CHANGED
@@ -1,128 +1,51 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
|
4 |
-
from config import (
|
5 |
-
OPENAI_API_KEY,
|
6 |
-
OPENAI_DEFAULT_MODEL,
|
7 |
-
MAX_PUBMED_RESULTS
|
8 |
-
)
|
9 |
-
from pubmed_rag import (
|
10 |
-
search_pubmed, fetch_pubmed_abstracts, chunk_and_summarize,
|
11 |
-
upsert_documents, semantic_search
|
12 |
-
)
|
13 |
-
from models import chat_with_openai
|
14 |
from image_pipeline import analyze_medical_image
|
|
|
15 |
|
16 |
-
###############################################################################
|
17 |
-
# STREAMLIT SETUP #
|
18 |
-
###############################################################################
|
19 |
st.set_page_config(page_title="Advanced Medical AI", layout="wide")
|
20 |
|
21 |
def main():
|
22 |
-
st.title("Advanced Medical AI
|
23 |
-
|
24 |
-
st.
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
if not query.strip():
|
60 |
-
st.warning("Please enter a query.")
|
61 |
-
return
|
62 |
-
|
63 |
-
with st.spinner("Searching PubMed..."):
|
64 |
-
pmids = search_pubmed(query, max_art)
|
65 |
-
|
66 |
-
if not pmids:
|
67 |
-
st.error("No articles found. Try another query.")
|
68 |
-
return
|
69 |
-
|
70 |
-
with st.spinner("Fetching and Summarizing..."):
|
71 |
-
raw_abstracts = fetch_pubmed_abstracts(pmids)
|
72 |
-
# Summarize each
|
73 |
-
summarized = {}
|
74 |
-
for pmid, text in raw_abstracts.items():
|
75 |
-
if text.startswith("Error"):
|
76 |
-
summarized[pmid] = text
|
77 |
-
else:
|
78 |
-
summary = chunk_and_summarize(text)
|
79 |
-
summarized[pmid] = summary
|
80 |
-
|
81 |
-
st.subheader("Summaries")
|
82 |
-
for i, (pmid, summary) in enumerate(summarized.items(), start=1):
|
83 |
-
st.markdown(f"**[Ref{i}] PMID {pmid}**")
|
84 |
-
st.write(summary)
|
85 |
-
|
86 |
-
# Upsert into vector DB
|
87 |
-
upsert_documents(summarized) # store raw or summarized texts
|
88 |
-
|
89 |
-
# Build system prompt
|
90 |
-
system_prompt = "You are an advanced medical assistant with the following references:\n"
|
91 |
-
for i, (pmid, summary) in enumerate(summarized.items(), start=1):
|
92 |
-
system_prompt += f"[Ref{i}] PMID {pmid}: {summary}\n"
|
93 |
-
system_prompt += "\nUsing these references, provide an evidence-based answer."
|
94 |
-
|
95 |
-
with st.spinner("Generating final answer..."):
|
96 |
-
final_answer = chat_with_openai(system_prompt, query)
|
97 |
-
st.subheader("Final Answer")
|
98 |
-
st.write(final_answer)
|
99 |
-
|
100 |
-
def medical_image_analysis():
|
101 |
-
st.subheader("Medical Image Analysis")
|
102 |
-
uploaded_file = st.file_uploader("Upload a Medical Image (PNG/JPG)", type=["png", "jpg", "jpeg"])
|
103 |
-
if uploaded_file is not None:
|
104 |
-
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
105 |
-
if st.button("Analyze Image"):
|
106 |
-
with st.spinner("Analyzing..."):
|
107 |
result = analyze_medical_image(uploaded_file)
|
108 |
st.subheader("Diagnostic Insight")
|
109 |
st.write(result)
|
110 |
|
111 |
-
def vector_db_search_ui():
|
112 |
-
st.subheader("Semantic Search in Vector DB")
|
113 |
-
user_query = st.text_input("Enter a query to find relevant documents", "")
|
114 |
-
top_k = st.slider("Number of results", 1, 10, 3)
|
115 |
-
if st.button("Search"):
|
116 |
-
if not user_query.strip():
|
117 |
-
st.warning("Please enter a query.")
|
118 |
-
return
|
119 |
-
with st.spinner("Performing semantic search..."):
|
120 |
-
results = semantic_search(user_query, top_k=top_k)
|
121 |
-
st.subheader("Search Results")
|
122 |
-
for i, doc in enumerate(results, start=1):
|
123 |
-
st.markdown(f"**Result {i}** - PMID {doc['pmid']} (Distance: {doc['score']:.4f})")
|
124 |
-
st.write(doc["text"])
|
125 |
-
st.write("---")
|
126 |
-
|
127 |
if __name__ == "__main__":
|
128 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from pubmed_rag import search_pubmed, fetch_pubmed_abstracts, summarize_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from image_pipeline import analyze_medical_image
|
4 |
+
from models import chat_with_openai
|
5 |
|
|
|
|
|
|
|
6 |
st.set_page_config(page_title="Advanced Medical AI", layout="wide")
|
7 |
|
8 |
def main():
|
9 |
+
st.title("Advanced Medical AI")
|
10 |
+
st.sidebar.title("Features")
|
11 |
+
task = st.sidebar.selectbox("Choose a task:", ["PubMed Q&A", "Medical Image Analysis"])
|
12 |
+
|
13 |
+
if task == "PubMed Q&A":
|
14 |
+
st.subheader("PubMed Question Answering")
|
15 |
+
query = st.text_input("Enter your medical question:", "What are the latest treatments for diabetes?")
|
16 |
+
max_results = st.slider("Number of PubMed articles to retrieve:", 1, 10, 5)
|
17 |
+
|
18 |
+
if st.button("Run Query"):
|
19 |
+
with st.spinner("Searching PubMed..."):
|
20 |
+
pmids = search_pubmed(query, max_results)
|
21 |
+
if not pmids:
|
22 |
+
st.error("No results found. Try another query.")
|
23 |
+
return
|
24 |
+
|
25 |
+
with st.spinner("Fetching and summarizing abstracts..."):
|
26 |
+
abstracts = fetch_pubmed_abstracts(pmids)
|
27 |
+
summaries = {pmid: summarize_text(abstract) for pmid, abstract in abstracts.items()}
|
28 |
+
|
29 |
+
st.subheader("PubMed Summaries")
|
30 |
+
for pmid, summary in summaries.items():
|
31 |
+
st.write(f"**PMID {pmid}**: {summary}")
|
32 |
+
|
33 |
+
system_message = "You are a medical assistant with access to PubMed summaries."
|
34 |
+
user_message = query
|
35 |
+
with st.spinner("Generating answer..."):
|
36 |
+
answer = chat_with_openai(system_message, user_message)
|
37 |
+
st.subheader("AI-Powered Answer")
|
38 |
+
st.write(answer)
|
39 |
+
|
40 |
+
elif task == "Medical Image Analysis":
|
41 |
+
st.subheader("Medical Image Analysis")
|
42 |
+
uploaded_file = st.file_uploader("Upload a medical image (PNG/JPG):", type=["png", "jpg", "jpeg"])
|
43 |
+
if uploaded_file:
|
44 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
45 |
+
with st.spinner("Analyzing image..."):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
result = analyze_medical_image(uploaded_file)
|
47 |
st.subheader("Diagnostic Insight")
|
48 |
st.write(result)
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
if __name__ == "__main__":
|
51 |
main()
|