mgbam commited on
Commit
9aec363
·
verified ·
1 Parent(s): 8c08ece

Update image_pipeline.py

Browse files
Files changed (1) hide show
  1. image_pipeline.py +14 -6
image_pipeline.py CHANGED
@@ -1,17 +1,25 @@
1
- from transformers import AutoProcessor, AutoModel
2
  from PIL import Image
3
 
4
- from config import HF_IMAGE_MODEL, HF_TOKEN
5
 
6
- # Load the Hugging Face model for medical image analysis
7
- model = AutoModel.from_pretrained(HF_IMAGE_MODEL, trust_remote_code=True)
8
- processor = AutoProcessor.from_pretrained(HF_IMAGE_MODEL)
9
 
10
  def analyze_medical_image(image_file):
11
  """
12
  Process and analyze a medical image to generate diagnostic insights.
13
  """
 
14
  image = Image.open(image_file).convert("RGB")
 
 
15
  inputs = processor(images=image, return_tensors="pt")
 
 
16
  outputs = model.generate(**inputs, max_length=256)
17
- return processor.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
1
+ from transformers import BlipProcessor, BlipForConditionalGeneration
2
  from PIL import Image
3
 
4
+ from config import HF_IMAGE_MODEL
5
 
6
+ # Load the Hugging Face processor and model for medical image analysis
7
+ processor = BlipProcessor.from_pretrained(HF_IMAGE_MODEL)
8
+ model = BlipForConditionalGeneration.from_pretrained(HF_IMAGE_MODEL)
9
 
10
  def analyze_medical_image(image_file):
11
  """
12
  Process and analyze a medical image to generate diagnostic insights.
13
  """
14
+ # Open the image file
15
  image = Image.open(image_file).convert("RGB")
16
+
17
+ # Preprocess the image and prepare inputs
18
  inputs = processor(images=image, return_tensors="pt")
19
+
20
+ # Generate outputs
21
  outputs = model.generate(**inputs, max_length=256)
22
+
23
+ # Decode and return the generated text
24
+ result = processor.decode(outputs[0], skip_special_tokens=True)
25
+ return result