Update app.py
Browse files
app.py
CHANGED
@@ -3,134 +3,126 @@ import os
|
|
3 |
|
4 |
from config import (
|
5 |
OPENAI_API_KEY,
|
6 |
-
|
7 |
-
|
8 |
)
|
9 |
-
from
|
10 |
-
|
11 |
-
|
12 |
-
fetch_pubmed_abstracts,
|
13 |
-
chunk_and_summarize
|
14 |
)
|
15 |
-
from
|
|
|
16 |
|
17 |
###############################################################################
|
18 |
-
#
|
19 |
###############################################################################
|
20 |
-
st.set_page_config(page_title="
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
###############################################################################
|
25 |
-
@st.cache_resource
|
26 |
-
def initialize_app():
|
27 |
-
"""
|
28 |
-
Configure LLMs (OpenAI/Gemini) and load the image captioning model once.
|
29 |
-
"""
|
30 |
-
configure_llms()
|
31 |
-
model = load_image_model()
|
32 |
-
return model
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
###############################################################################
|
39 |
-
def build_system_prompt_with_refs(pmids, summaries):
|
40 |
-
"""
|
41 |
-
Creates a system prompt for the LLM that includes references [Ref1], [Ref2], etc.
|
42 |
-
"""
|
43 |
-
system_context = "You have access to the following summarized PubMed articles:\n\n"
|
44 |
-
for idx, pmid in enumerate(pmids, start=1):
|
45 |
-
ref_label = f"[Ref{idx}]"
|
46 |
-
system_context += f"{ref_label} (PMID {pmid}): {summaries[pmid]}\n\n"
|
47 |
-
system_context += "Use this info to answer the user's question, citing references if needed."
|
48 |
-
return system_context
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
|
|
|
56 |
st.markdown("""
|
57 |
-
This demonstration
|
58 |
-
|
59 |
-
2. **Image Captioning**: Upload an image for analysis using a known stable model.
|
60 |
""")
|
61 |
|
62 |
-
|
63 |
-
st.subheader("
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
# Section B: PubMed-based RAG
|
73 |
-
st.subheader("PubMed RAG Pipeline")
|
74 |
-
user_query = st.text_input("Enter a medical question:", "What are the latest treatments for type 2 diabetes?")
|
75 |
-
|
76 |
-
c1, c2, c3 = st.columns([2,1,1])
|
77 |
-
with c1:
|
78 |
-
st.markdown("**Parameters**:")
|
79 |
-
max_papers = st.slider("Number of Articles", 1, 10, 3)
|
80 |
-
chunk_size = st.slider("Chunk Size", 128, 1024, DEFAULT_CHUNK_SIZE)
|
81 |
-
with c2:
|
82 |
-
llm_choice = st.selectbox("Choose LLM", ["OpenAI: GPT-3.5", "Gemini: PaLM2"])
|
83 |
-
with c3:
|
84 |
-
temperature = st.slider("LLM Temperature", 0.0, 1.0, 0.3, step=0.1)
|
85 |
-
|
86 |
-
if st.button("Run RAG Pipeline"):
|
87 |
-
if not user_query.strip():
|
88 |
st.warning("Please enter a query.")
|
89 |
return
|
90 |
-
|
91 |
with st.spinner("Searching PubMed..."):
|
92 |
-
pmids = search_pubmed(
|
93 |
|
94 |
if not pmids:
|
95 |
-
st.error("No
|
96 |
return
|
97 |
-
|
98 |
-
with st.spinner("Fetching
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
104 |
else:
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
st.markdown(f"**[Ref{idx}] PMID {pmid}**")
|
110 |
-
st.write(summarized_map[pmid])
|
111 |
-
st.write("---")
|
112 |
|
113 |
-
|
114 |
-
system_prompt =
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
else:
|
119 |
-
answer = gemini_chat(system_prompt, user_query, temperature=temperature)
|
120 |
|
121 |
-
st.
|
122 |
-
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
st.
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
if __name__ == "__main__":
|
136 |
main()
|
|
|
3 |
|
4 |
from config import (
|
5 |
OPENAI_API_KEY,
|
6 |
+
OPENAI_DEFAULT_MODEL,
|
7 |
+
MAX_PUBMED_RESULTS
|
8 |
)
|
9 |
+
from pubmed_rag import (
|
10 |
+
search_pubmed, fetch_pubmed_abstracts, chunk_and_summarize,
|
11 |
+
upsert_documents, semantic_search
|
|
|
|
|
12 |
)
|
13 |
+
from models import chat_with_openai
|
14 |
+
from image_pipeline import analyze_medical_image
|
15 |
|
16 |
###############################################################################
|
17 |
+
# STREAMLIT SETUP #
|
18 |
###############################################################################
|
19 |
+
st.set_page_config(page_title="Advanced Medical AI", layout="wide")
|
20 |
|
21 |
+
def main():
|
22 |
+
st.title("Advanced Medical AI: Multi-Modal RAG & Image Diagnostics")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
st.markdown("""
|
25 |
+
**Features**:
|
26 |
+
1. **PubMed RAG**: Retrieve and summarize medical literature, store in a vector DB,
|
27 |
+
and use advanced semantic search for context.
|
28 |
+
2. **LLM Q&A**: Leverage OpenAI for final question-answering with RAG context.
|
29 |
+
3. **Medical Image Analysis**: Use `HuggingFaceTB/SmolVLM-500M-Instruct` for diagnostic insights.
|
30 |
+
4. **Multi-Lingual & Extended Triage**: Placeholder expansions for real-time translation or advanced triage logic.
|
31 |
+
5. **Production-Ready**: Modular, concurrent, disclaimers, and synergy across tasks.
|
32 |
+
""")
|
33 |
|
34 |
+
menu = ["PubMed RAG Q&A", "Medical Image Analysis", "Semantic Search (Vector DB)"]
|
35 |
+
choice = st.sidebar.selectbox("Select Task", menu)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
if choice == "PubMed RAG Q&A":
|
38 |
+
pubmed_rag_qna()
|
39 |
+
elif choice == "Medical Image Analysis":
|
40 |
+
medical_image_analysis()
|
41 |
+
else:
|
42 |
+
vector_db_search_ui()
|
43 |
|
44 |
+
st.markdown("---")
|
45 |
st.markdown("""
|
46 |
+
**Disclaimer**: This is an **advanced demonstration** for educational or research purposes only.
|
47 |
+
Always consult a qualified healthcare professional for personal medical decisions.
|
|
|
48 |
""")
|
49 |
|
50 |
+
def pubmed_rag_qna():
|
51 |
+
st.subheader("PubMed Retrieval-Augmented Q&A")
|
52 |
+
query = st.text_area(
|
53 |
+
"Ask a medical question (e.g., 'What are the latest treatments for type 2 diabetes?'):",
|
54 |
+
height=100
|
55 |
+
)
|
56 |
+
max_art = st.slider("Number of PubMed Articles to Retrieve", 1, 10, 5)
|
57 |
+
|
58 |
+
if st.button("Search & Summarize"):
|
59 |
+
if not query.strip():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
st.warning("Please enter a query.")
|
61 |
return
|
62 |
+
|
63 |
with st.spinner("Searching PubMed..."):
|
64 |
+
pmids = search_pubmed(query, max_art)
|
65 |
|
66 |
if not pmids:
|
67 |
+
st.error("No articles found. Try another query.")
|
68 |
return
|
69 |
+
|
70 |
+
with st.spinner("Fetching and Summarizing..."):
|
71 |
+
raw_abstracts = fetch_pubmed_abstracts(pmids)
|
72 |
+
# Summarize each
|
73 |
+
summarized = {}
|
74 |
+
for pmid, text in raw_abstracts.items():
|
75 |
+
if text.startswith("Error"):
|
76 |
+
summarized[pmid] = text
|
77 |
else:
|
78 |
+
summary = chunk_and_summarize(text)
|
79 |
+
summarized[pmid] = summary
|
80 |
+
|
81 |
+
st.subheader("Summaries")
|
82 |
+
for i, (pmid, summary) in enumerate(summarized.items(), start=1):
|
83 |
+
st.markdown(f"**[Ref{i}] PMID {pmid}**")
|
84 |
+
st.write(summary)
|
85 |
|
86 |
+
# Upsert into vector DB
|
87 |
+
upsert_documents(summarized) # store raw or summarized texts
|
|
|
|
|
|
|
88 |
|
89 |
+
# Build system prompt
|
90 |
+
system_prompt = "You are an advanced medical assistant with the following references:\n"
|
91 |
+
for i, (pmid, summary) in enumerate(summarized.items(), start=1):
|
92 |
+
system_prompt += f"[Ref{i}] PMID {pmid}: {summary}\n"
|
93 |
+
system_prompt += "\nUsing these references, provide an evidence-based answer."
|
|
|
|
|
94 |
|
95 |
+
with st.spinner("Generating final answer..."):
|
96 |
+
final_answer = chat_with_openai(system_prompt, query)
|
97 |
+
st.subheader("Final Answer")
|
98 |
+
st.write(final_answer)
|
99 |
|
100 |
+
def medical_image_analysis():
|
101 |
+
st.subheader("Medical Image Analysis")
|
102 |
+
uploaded_file = st.file_uploader("Upload a Medical Image (PNG/JPG)", type=["png", "jpg", "jpeg"])
|
103 |
+
if uploaded_file is not None:
|
104 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
105 |
+
if st.button("Analyze Image"):
|
106 |
+
with st.spinner("Analyzing..."):
|
107 |
+
result = analyze_medical_image(uploaded_file)
|
108 |
+
st.subheader("Diagnostic Insight")
|
109 |
+
st.write(result)
|
110 |
+
|
111 |
+
def vector_db_search_ui():
|
112 |
+
st.subheader("Semantic Search in Vector DB")
|
113 |
+
user_query = st.text_input("Enter a query to find relevant documents", "")
|
114 |
+
top_k = st.slider("Number of results", 1, 10, 3)
|
115 |
+
if st.button("Search"):
|
116 |
+
if not user_query.strip():
|
117 |
+
st.warning("Please enter a query.")
|
118 |
+
return
|
119 |
+
with st.spinner("Performing semantic search..."):
|
120 |
+
results = semantic_search(user_query, top_k=top_k)
|
121 |
+
st.subheader("Search Results")
|
122 |
+
for i, doc in enumerate(results, start=1):
|
123 |
+
st.markdown(f"**Result {i}** - PMID {doc['pmid']} (Distance: {doc['score']:.4f})")
|
124 |
+
st.write(doc["text"])
|
125 |
+
st.write("---")
|
126 |
|
127 |
if __name__ == "__main__":
|
128 |
main()
|