from transformers import AutoProcessor, AutoModelForImageTextToText from PIL import Image import torch from config import HF_IMAGE_MODEL # Load the advanced vision-language model for medical images processor = AutoProcessor.from_pretrained(HF_IMAGE_MODEL) model = AutoModelForImageTextToText.from_pretrained(HF_IMAGE_MODEL) def analyze_medical_image(image_file): """ Performs advanced medical image analysis. Returns a text explanation or diagnostic insight from the model. """ image = Image.open(image_file).convert("RGB") inputs = processor(images=image, return_tensors="pt").to(model.device) # Inference outputs = model.generate(**inputs, max_length=256) return processor.batch_decode(outputs, skip_special_tokens=True)[0]