File size: 2,259 Bytes
9c7387c
 
 
 
 
 
 
 
 
 
 
 
 
2a43c02
 
 
 
 
 
 
 
 
 
 
 
9c7387c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import flwr as fl
import torch
from collections import OrderedDict # For the example provided.

def run_federated_learning():
    """
    Sets up and starts a federated learning simulation.
    This is a highly conceptual example. Actual implementation requires:
        1. A defined model architecture.
        2. A training loop using PyTorch or TensorFlow.
        3. Data loaders.
        4. Proper handling of FL strategies.
    """
    return """
      Federated Learning Implementation Status
      <br><br>
      This is a conceptual federated learning implementation. Actual data and the requirements are not implemented.
      <br><br>

      To implement Federated Learning in reality with all the requirements you need:
      <br>1. A defined model architecture: Check the FL Client and model defined with model parameters and model code.
      <br>2. A training loop using PyTorch or TensorFlow: Training and validation needs to be provided, also look the parameter setup and the model
      <br>3. Data loaders: Data needs to be correctly loaded into the program.
      <br>4. Proper handling of FL strategies: FL learning algorithms needs to be correctly provided.
    """

    class FlowerClient(fl.client.NumPyClient):
        def __init__(self, model, trainloader, valloader):
            self.model = model
            self.trainloader = trainloader
            self.valloader = valloader

        def get_parameters(self, config):
            return [val.cpu().numpy() for _, val in self.model.state_dict().items()]

        def set_parameters(self, parameters):
            params_dict = zip(self.model.state_dict().keys(), parameters)
            state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
            self.model.load_state_dict(state_dict, strict=True)

        def fit(self, parameters, config):
            self.set_parameters(parameters)
            # Train.
            print("Train the parameters here.")
            return parameters, 1, {}

        def evaluate(self, parameters, config):
            self.set_parameters(parameters)
            # Test (validate).
            return 1,1, {"accuracy": 1}

    #Flower code
    #The parameters needs to be added.

    print("Started Simulation FL code")