Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,15 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from Bio import Entrez
|
| 3 |
from transformers import pipeline
|
| 4 |
-
import spacy
|
| 5 |
import os # For environment variables and file paths
|
| 6 |
|
| 7 |
# ---------------------------- Configuration ----------------------------
|
| 8 |
ENTREZ_EMAIL = os.environ.get("ENTREZ_EMAIL", "[email protected]") # Use environment variable, default fallback
|
| 9 |
HUGGINGFACE_API_TOKEN = os.environ.get("HUGGINGFACE_API_TOKEN", "HUGGINGFACE_API_TOKEN") # Use environment variable, default fallback
|
| 10 |
SUMMARIZATION_MODEL = "facebook/bart-large-cnn"
|
| 11 |
-
SPACY_MODEL = "en_core_web_sm"
|
| 12 |
|
| 13 |
# ---------------------------- Global Variables ----------------------------
|
| 14 |
summarizer = None
|
| 15 |
-
nlp = None
|
| 16 |
initialization_status = "Initializing..." # Track initialization state
|
| 17 |
|
| 18 |
# ---------------------------- Helper Functions ----------------------------
|
|
@@ -26,39 +23,6 @@ def log_error(message: str):
|
|
| 26 |
except:
|
| 27 |
print("Couldn't write to error log file.") #If logging fails, still print to console
|
| 28 |
|
| 29 |
-
# ---------------------------- Language Model Loading ----------------------------
|
| 30 |
-
|
| 31 |
-
def load_spacy_model(model_name="en_core_web_sm"):
|
| 32 |
-
"""Loads the SpaCy language model, downloading it if necessary."""
|
| 33 |
-
global initialization_status # To update the initialization status
|
| 34 |
-
|
| 35 |
-
try:
|
| 36 |
-
print(f"Attempting to load SpaCy model '{model_name}'...")
|
| 37 |
-
nlp_model = spacy.load(model_name)
|
| 38 |
-
print(f"Successfully loaded SpaCy model '{model_name}'.")
|
| 39 |
-
initialization_status += f"\nSpaCy model '{model_name}' loaded."
|
| 40 |
-
return nlp_model
|
| 41 |
-
except OSError:
|
| 42 |
-
print(f"SpaCy model '{model_name}' not found. Downloading...")
|
| 43 |
-
initialization_status += f"\nSpaCy model '{model_name}' not found. Downloading..."
|
| 44 |
-
try:
|
| 45 |
-
import subprocess
|
| 46 |
-
subprocess.check_call(["python", "-m", "spacy", "download", model_name])
|
| 47 |
-
nlp_model = spacy.load(model_name)
|
| 48 |
-
print(f"Successfully loaded SpaCy model '{model_name}' after downloading.")
|
| 49 |
-
initialization_status += f"\nSuccessfully loaded SpaCy model '{model_name}' after downloading."
|
| 50 |
-
return nlp_model
|
| 51 |
-
|
| 52 |
-
except Exception as e:
|
| 53 |
-
log_error(f"Failed to download or load SpaCy model '{model_name}': {e}")
|
| 54 |
-
initialization_status += f"\nFailed to download or load SpaCy model '{model_name}': {e}"
|
| 55 |
-
return None # Indicate failure
|
| 56 |
-
|
| 57 |
-
except Exception as e:
|
| 58 |
-
log_error(f"Error loading SpaCy model '{model_name}': {e}")
|
| 59 |
-
initialization_status += f"\nError loading SpaCy model '{model_name}': {e}"
|
| 60 |
-
return None
|
| 61 |
-
|
| 62 |
# ---------------------------- Tool Functions ----------------------------
|
| 63 |
|
| 64 |
def search_pubmed(query: str) -> list:
|
|
@@ -95,27 +59,13 @@ def summarize_abstract(abstract: str) -> str:
|
|
| 95 |
try:
|
| 96 |
# Check if the abstract is empty or too short
|
| 97 |
if not abstract or len(abstract.strip()) < 50:
|
| 98 |
-
return "Abstract too short to summarize."
|
| 99 |
|
| 100 |
summary = summarizer(abstract, max_length=130, min_length=30, do_sample=False)[0]['summary_text']
|
| 101 |
return summary
|
| 102 |
except Exception as e:
|
| 103 |
log_error(f"Summarization error: {e}")
|
| 104 |
-
return f"Error during summarization:
|
| 105 |
-
|
| 106 |
-
def extract_entities(text: str) -> list:
|
| 107 |
-
"""Extracts entities (simplified) using SpaCy."""
|
| 108 |
-
global nlp
|
| 109 |
-
if nlp is None:
|
| 110 |
-
log_error("SpaCy model not initialized.")
|
| 111 |
-
return "SpaCy model not initialized. Check initialization status."
|
| 112 |
-
try:
|
| 113 |
-
doc = nlp(text)
|
| 114 |
-
entities = [(ent.text, ent.label_) for ent in doc.ents]
|
| 115 |
-
return entities
|
| 116 |
-
except Exception as e:
|
| 117 |
-
log_error(f"Entity extraction error: {e}")
|
| 118 |
-
return [f"Error during entity extraction: {e}"]
|
| 119 |
|
| 120 |
# ---------------------------- Agent Function ----------------------------
|
| 121 |
|
|
@@ -129,10 +79,15 @@ def medai_agent(query: str) -> str:
|
|
| 129 |
abstract = fetch_abstract(article_id)
|
| 130 |
if "Error" not in abstract:
|
| 131 |
summary = summarize_abstract(abstract)
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
| 134 |
else:
|
| 135 |
-
results.append(f"
|
|
|
|
|
|
|
|
|
|
| 136 |
return "\n".join(results)
|
| 137 |
else:
|
| 138 |
return f"No articles found or error occurred: {article_ids}"
|
|
@@ -140,48 +95,59 @@ def medai_agent(query: str) -> str:
|
|
| 140 |
# ---------------------------- Initialization and Setup ----------------------------
|
| 141 |
|
| 142 |
def setup():
|
| 143 |
-
"""Initializes the summarization model
|
| 144 |
-
global summarizer,
|
| 145 |
initialization_status = "Initializing..."
|
| 146 |
try:
|
| 147 |
print("Initializing summarization pipeline...")
|
| 148 |
initialization_status += "\nInitializing summarization pipeline..."
|
| 149 |
summarizer = pipeline("summarization", model=SUMMARIZATION_MODEL, token=HUGGINGFACE_API_TOKEN)
|
| 150 |
print("Summarization pipeline initialized.")
|
| 151 |
-
initialization_status += "\nSummarization pipeline initialized."
|
| 152 |
-
|
| 153 |
-
print("Loading SpaCy model...")
|
| 154 |
-
initialization_status += "\nLoading SpaCy model..."
|
| 155 |
-
global nlp
|
| 156 |
-
nlp = load_spacy_model() # Call the SpaCy loading function.
|
| 157 |
-
if nlp is None:
|
| 158 |
-
initialization_status += "\nSpaCy model failed to load. Check the error log."
|
| 159 |
-
return initialization_status
|
| 160 |
-
|
| 161 |
-
print("SpaCy model loaded.")
|
| 162 |
-
initialization_status += "\nSpaCy model loaded."
|
| 163 |
-
|
| 164 |
-
initialization_status = "MedAI Agent initialized successfully!"
|
| 165 |
-
return initialization_status # Return the status message
|
| 166 |
except Exception as e:
|
| 167 |
initialization_status = f"Initialization error: {e}"
|
| 168 |
log_error(initialization_status)
|
| 169 |
-
return initialization_status
|
| 170 |
|
| 171 |
# ---------------------------- Gradio Interface ----------------------------
|
| 172 |
|
| 173 |
def launch_gradio():
|
| 174 |
"""Launches the Gradio interface."""
|
| 175 |
-
global initialization_status
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
gr.Markdown("# MedAI: Medical Literature Review and Summarization")
|
| 178 |
-
status_display = gr.Textbox(value=initialization_status, interactive=False)
|
| 179 |
query_input = gr.Textbox(lines=3, placeholder="Enter your medical query (e.g., 'new treatments for diabetes')...")
|
| 180 |
submit_button = gr.Button("Submit")
|
| 181 |
-
output_results = gr.
|
| 182 |
|
| 183 |
submit_button.click(medai_agent, inputs=query_input, outputs=output_results)
|
| 184 |
-
status_display.value = setup()
|
| 185 |
|
| 186 |
iface.launch()
|
| 187 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from Bio import Entrez
|
| 3 |
from transformers import pipeline
|
|
|
|
| 4 |
import os # For environment variables and file paths
|
| 5 |
|
| 6 |
# ---------------------------- Configuration ----------------------------
|
| 7 |
ENTREZ_EMAIL = os.environ.get("ENTREZ_EMAIL", "[email protected]") # Use environment variable, default fallback
|
| 8 |
HUGGINGFACE_API_TOKEN = os.environ.get("HUGGINGFACE_API_TOKEN", "HUGGINGFACE_API_TOKEN") # Use environment variable, default fallback
|
| 9 |
SUMMARIZATION_MODEL = "facebook/bart-large-cnn"
|
|
|
|
| 10 |
|
| 11 |
# ---------------------------- Global Variables ----------------------------
|
| 12 |
summarizer = None
|
|
|
|
| 13 |
initialization_status = "Initializing..." # Track initialization state
|
| 14 |
|
| 15 |
# ---------------------------- Helper Functions ----------------------------
|
|
|
|
| 23 |
except:
|
| 24 |
print("Couldn't write to error log file.") #If logging fails, still print to console
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
# ---------------------------- Tool Functions ----------------------------
|
| 27 |
|
| 28 |
def search_pubmed(query: str) -> list:
|
|
|
|
| 59 |
try:
|
| 60 |
# Check if the abstract is empty or too short
|
| 61 |
if not abstract or len(abstract.strip()) < 50:
|
| 62 |
+
return "Abstract too short to summarize. A more detailed abstract was not found."
|
| 63 |
|
| 64 |
summary = summarizer(abstract, max_length=130, min_length=30, do_sample=False)[0]['summary_text']
|
| 65 |
return summary
|
| 66 |
except Exception as e:
|
| 67 |
log_error(f"Summarization error: {e}")
|
| 68 |
+
return f"Error during summarization: Failed to generate concise summary with the current model."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
# ---------------------------- Agent Function ----------------------------
|
| 71 |
|
|
|
|
| 79 |
abstract = fetch_abstract(article_id)
|
| 80 |
if "Error" not in abstract:
|
| 81 |
summary = summarize_abstract(abstract)
|
| 82 |
+
results.append(f"<div class='article'>\n"
|
| 83 |
+
f" <h3 class='article-id'>Article ID: {article_id}</h3>\n"
|
| 84 |
+
f" <p class='summary'><strong>Summary:</strong> {summary}</p>\n"
|
| 85 |
+
f"</div>\n")
|
| 86 |
else:
|
| 87 |
+
results.append(f"<div class='article error'>\n"
|
| 88 |
+
f" <h3 class='article-id'>Article ID: {article_id}</h3>\n"
|
| 89 |
+
f" <p class='error-message'>Error processing article: {abstract}</p>\n"
|
| 90 |
+
f"</div>\n")
|
| 91 |
return "\n".join(results)
|
| 92 |
else:
|
| 93 |
return f"No articles found or error occurred: {article_ids}"
|
|
|
|
| 95 |
# ---------------------------- Initialization and Setup ----------------------------
|
| 96 |
|
| 97 |
def setup():
|
| 98 |
+
"""Initializes the summarization model."""
|
| 99 |
+
global summarizer, initialization_status
|
| 100 |
initialization_status = "Initializing..."
|
| 101 |
try:
|
| 102 |
print("Initializing summarization pipeline...")
|
| 103 |
initialization_status += "\nInitializing summarization pipeline..."
|
| 104 |
summarizer = pipeline("summarization", model=SUMMARIZATION_MODEL, token=HUGGINGFACE_API_TOKEN)
|
| 105 |
print("Summarization pipeline initialized.")
|
| 106 |
+
initialization_status += f"\nSummarization pipeline initialized. Model {SUMMARIZATION_MODEL} loaded and ready."
|
| 107 |
+
return initialization_status
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
except Exception as e:
|
| 109 |
initialization_status = f"Initialization error: {e}"
|
| 110 |
log_error(initialization_status)
|
| 111 |
+
return initialization_status
|
| 112 |
|
| 113 |
# ---------------------------- Gradio Interface ----------------------------
|
| 114 |
|
| 115 |
def launch_gradio():
|
| 116 |
"""Launches the Gradio interface."""
|
| 117 |
+
global initialization_status
|
| 118 |
+
|
| 119 |
+
# CSS to style the article output
|
| 120 |
+
css = """
|
| 121 |
+
.article {
|
| 122 |
+
border: 1px solid #ddd;
|
| 123 |
+
margin-bottom: 10px;
|
| 124 |
+
padding: 10px;
|
| 125 |
+
border-radius: 5px;
|
| 126 |
+
}
|
| 127 |
+
.article.error {
|
| 128 |
+
border-color: #f00;
|
| 129 |
+
}
|
| 130 |
+
.article-id {
|
| 131 |
+
font-size: 1.2em;
|
| 132 |
+
margin-bottom: 5px;
|
| 133 |
+
}
|
| 134 |
+
.summary {
|
| 135 |
+
font-style: italic;
|
| 136 |
+
}
|
| 137 |
+
.error-message {
|
| 138 |
+
color: #f00;
|
| 139 |
+
}
|
| 140 |
+
"""
|
| 141 |
+
|
| 142 |
+
with gr.Blocks(css=css) as iface:
|
| 143 |
gr.Markdown("# MedAI: Medical Literature Review and Summarization")
|
| 144 |
+
status_display = gr.Textbox(value=initialization_status, interactive=False)
|
| 145 |
query_input = gr.Textbox(lines=3, placeholder="Enter your medical query (e.g., 'new treatments for diabetes')...")
|
| 146 |
submit_button = gr.Button("Submit")
|
| 147 |
+
output_results = gr.HTML() # Use HTML for formatted output
|
| 148 |
|
| 149 |
submit_button.click(medai_agent, inputs=query_input, outputs=output_results)
|
| 150 |
+
status_display.value = setup()
|
| 151 |
|
| 152 |
iface.launch()
|
| 153 |
|