Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ warnings.filterwarnings('ignore')
|
|
14 |
|
15 |
CSS = """
|
16 |
/* --- Phoenix UI Professional Dark CSS --- */
|
17 |
-
|
18 |
.stat-card { border-radius: 12px !important; padding: 20px !important; background: #1f2937 !important; border: 1px solid #374151 !important; text-align: center; transition: all 0.3s ease; }
|
19 |
.stat-card:hover { transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgba(0,0,0,0.1), 0 4px 6px -2px rgba(0,0,0,0.05); }
|
20 |
.stat-card-title { font-size: 16px; font-weight: 500; color: #9ca3af !important; margin-bottom: 8px; }
|
@@ -34,14 +34,10 @@ class DataExplorerApp:
|
|
34 |
self.demo = self._build_ui()
|
35 |
|
36 |
def _build_ui(self) -> gr.Blocks:
|
37 |
-
"""
|
38 |
-
|
39 |
-
and registers all event handlers within the same Blocks context.
|
40 |
-
"""
|
41 |
-
with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="Professional AI Data Explorer") as demo:
|
42 |
-
# --- State Management ---
|
43 |
state_var = gr.State({})
|
44 |
-
|
45 |
# --- Component Definition ---
|
46 |
# Sidebar
|
47 |
cockpit_btn = gr.Button("π Data Cockpit", elem_classes="selected", elem_id="cockpit")
|
@@ -53,8 +49,8 @@ class DataExplorerApp:
|
|
53 |
suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False)
|
54 |
|
55 |
# Cockpit
|
56 |
-
rows_stat, cols_stat = gr.Textbox("0", interactive=False, elem_classes="stat-card-value"), gr.Textbox("0", interactive=False, elem_classes="stat-card-value")
|
57 |
-
quality_stat, time_cols_stat = gr.Textbox("0%", interactive=False, elem_classes="stat-card-value"), gr.Textbox("0", interactive=False, elem_classes="stat-card-value")
|
58 |
suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
|
59 |
|
60 |
# Deep Dive
|
@@ -63,10 +59,10 @@ class DataExplorerApp:
|
|
63 |
y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)", visible=False, interactive=False)
|
64 |
add_plot_btn = gr.Button("Add to Dashboard", variant="primary", interactive=False)
|
65 |
clear_plots_btn = gr.Button("Clear Dashboard")
|
66 |
-
dashboard_gallery = gr.Gallery(label="π Your Custom Dashboard", height="auto", columns=2, preview=True)
|
67 |
|
68 |
# Co-pilot
|
69 |
-
chatbot = gr.Chatbot(height=500, label="Conversation", show_copy_button=True)
|
70 |
copilot_explanation = gr.Markdown(visible=False, elem_classes="explanation-block")
|
71 |
copilot_code = gr.Code(language="python", visible=False, label="Executed Code")
|
72 |
copilot_plot = gr.Plot(visible=False, label="Generated Visualization")
|
@@ -77,13 +73,12 @@ class DataExplorerApp:
|
|
77 |
# --- Layout Arrangement ---
|
78 |
with gr.Row():
|
79 |
with gr.Column(scale=1, elem_classes="sidebar"):
|
80 |
-
gr.Markdown("## π AI Explorer Pro"); cockpit_btn; deep_dive_btn; copilot_btn; gr.Markdown("---")
|
81 |
file_input; status_output; gr.Markdown("---"); api_key_input; suggestion_btn
|
82 |
with gr.Column(scale=4):
|
83 |
welcome_page = gr.Column(visible=True)
|
84 |
with welcome_page:
|
85 |
gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV file** and **enter your Gemini API key** to begin your analysis.")
|
86 |
-
gr.Image("workflow.png", show_label=False, show_download_button=False, container=False)
|
87 |
|
88 |
cockpit_page = gr.Column(visible=False)
|
89 |
with cockpit_page:
|
@@ -108,35 +103,31 @@ class DataExplorerApp:
|
|
108 |
with gr.Accordion("AI's Detailed Response", open=True): copilot_explanation; copilot_code; copilot_plot; copilot_table
|
109 |
with gr.Row(): chat_input; chat_submit_btn
|
110 |
|
111 |
-
# --- Event Handlers Registration
|
112 |
-
pages = [cockpit_page, deep_dive_page, copilot_page]
|
113 |
nav_buttons = [cockpit_btn, deep_dive_btn, copilot_btn]
|
114 |
|
115 |
for i, btn in enumerate(nav_buttons):
|
116 |
-
btn.click(
|
117 |
-
lambda
|
118 |
-
).then(
|
119 |
-
lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons
|
120 |
-
)
|
121 |
|
122 |
file_input.upload(self.load_and_process_file, inputs=[file_input], outputs=[
|
123 |
state_var, status_output, welcome_page, cockpit_page,
|
124 |
rows_stat, cols_stat, quality_stat, time_cols_stat,
|
125 |
x_col_dd, y_col_dd, add_plot_btn
|
126 |
-
]).then(lambda: self._switch_page("cockpit"), outputs=pages)
|
127 |
-
|
128 |
|
129 |
api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[api_key_input], outputs=[suggestion_btn])
|
130 |
-
|
131 |
plot_type_dd.change(self._update_plot_controls, inputs=[plot_type_dd], outputs=[y_col_dd])
|
132 |
add_plot_btn.click(self.add_plot_to_dashboard, inputs=[state_var, x_col_dd, y_col_dd, plot_type_dd], outputs=[state_var, dashboard_gallery])
|
133 |
clear_plots_btn.click(self.clear_dashboard, inputs=[state_var], outputs=[state_var, dashboard_gallery])
|
134 |
-
|
135 |
suggestion_btn.click(self.get_ai_suggestions, inputs=[state_var, api_key_input], outputs=suggestion_buttons)
|
|
|
136 |
for btn in suggestion_buttons:
|
137 |
-
btn.click(self.handle_suggestion_click, inputs=[btn], outputs=[cockpit_page, deep_dive_page, copilot_page, chat_input]) \
|
138 |
-
|
139 |
-
|
140 |
|
141 |
chat_submit_btn.click(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
|
142 |
chat_input.submit(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
|
@@ -144,12 +135,14 @@ class DataExplorerApp:
|
|
144 |
return demo
|
145 |
|
146 |
def launch(self):
|
147 |
-
"""Launches the Gradio application."""
|
148 |
self.demo.launch(debug=True)
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
153 |
|
154 |
def _update_plot_controls(self, plot_type: str) -> gr.update:
|
155 |
return gr.update(visible=plot_type in ['scatter', 'box'])
|
@@ -157,16 +150,10 @@ class DataExplorerApp:
|
|
157 |
def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]:
|
158 |
try:
|
159 |
df = pd.read_csv(file_obj.name, low_memory=False)
|
160 |
-
for col in df.select_dtypes(include=['object']).columns:
|
161 |
-
try: df[col] = pd.to_datetime(df[col], errors='raise')
|
162 |
-
except (ValueError, TypeError): continue
|
163 |
-
|
164 |
metadata = self._extract_dataset_metadata(df)
|
165 |
state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
|
166 |
-
status_msg = f"β
**{os.path.basename(file_obj.name)}** loaded."
|
167 |
rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
|
168 |
-
|
169 |
-
return (state, status_msg, gr.update(visible=False), gr.update(visible=True),
|
170 |
f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}",
|
171 |
gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True))
|
172 |
except Exception as e:
|
@@ -179,11 +166,11 @@ class DataExplorerApp:
|
|
179 |
'numeric_cols': df.select_dtypes(include=np.number).columns.tolist(),
|
180 |
'categorical_cols': df.select_dtypes(include=['object', 'category']).columns.tolist(),
|
181 |
'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(),
|
182 |
-
'dtypes_head': df.head().to_string()
|
|
|
183 |
|
184 |
def add_plot_to_dashboard(self, state: Dict, x_col: str, y_col: Optional[str], plot_type: str) -> Tuple[Dict, List]:
|
185 |
-
if not x_col:
|
186 |
-
gr.Warning("Please select at least an X-axis column."); return state, state.get('dashboard_plots', [])
|
187 |
df = state['df']
|
188 |
title = f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col and plot_type in ['box', 'scatter'] else f"Distribution of {x_col}"
|
189 |
try:
|
@@ -196,17 +183,15 @@ class DataExplorerApp:
|
|
196 |
if fig:
|
197 |
fig.update_layout(template="plotly_dark"); state['dashboard_plots'].append(fig); gr.Info(f"Added '{title}' to the dashboard.")
|
198 |
return state, state['dashboard_plots']
|
199 |
-
except Exception as e:
|
200 |
-
gr.Error(f"Plotting Error: {e}"); return state, state.get('dashboard_plots', [])
|
201 |
|
202 |
def clear_dashboard(self, state: Dict) -> Tuple[Dict, List]:
|
203 |
state['dashboard_plots'] = []; gr.Info("Dashboard cleared."); return state, []
|
204 |
|
205 |
def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]:
|
206 |
-
if not api_key: gr.Warning("API Key is required
|
207 |
if not state: gr.Warning("Please load data first."); return [gr.update(visible=False)]*5
|
208 |
-
metadata = state['metadata']
|
209 |
-
prompt = f"""Based on this metadata (columns: {metadata['columns']}), generate 4 impactful analytical questions. Return ONLY a JSON list of strings."""
|
210 |
try:
|
211 |
genai.configure(api_key=api_key)
|
212 |
suggestions = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
|
@@ -214,22 +199,22 @@ class DataExplorerApp:
|
|
214 |
except Exception as e: gr.Error(f"AI Suggestion Error: {e}"); return [gr.update(visible=False)]*5
|
215 |
|
216 |
def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]:
|
217 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), question
|
218 |
|
219 |
def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) -> Any:
|
|
|
220 |
if not api_key or not state:
|
221 |
msg = "I need a Gemini API key and a dataset to work."; history.append((user_message, msg)); return history, *[gr.update(visible=False)]*4
|
222 |
|
223 |
history.append((user_message, "Thinking... π€")); yield history, *[gr.update(visible=False)]*4
|
224 |
|
225 |
-
metadata, prompt = state['metadata'], f"""You are 'Chief Data Scientist', an expert AI analyst
|
226 |
**Instructions:**
|
227 |
-
1. **Analyze:** Understand the user's intent.
|
228 |
-
2. **
|
229 |
-
3. **
|
230 |
-
4. **
|
231 |
-
5. **
|
232 |
-
6. **Respond ONLY with a single JSON object with keys: "plan", "code", "insight".**
|
233 |
**Metadata:** {metadata['dtypes_head']}
|
234 |
**User Question:** "{user_message}"
|
235 |
"""
|
|
|
14 |
|
15 |
CSS = """
|
16 |
/* --- Phoenix UI Professional Dark CSS --- */
|
17 |
+
#app-title { text-align: center; font-weight: 800; font-size: 2.5rem; }
|
18 |
.stat-card { border-radius: 12px !important; padding: 20px !important; background: #1f2937 !important; border: 1px solid #374151 !important; text-align: center; transition: all 0.3s ease; }
|
19 |
.stat-card:hover { transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgba(0,0,0,0.1), 0 4px 6px -2px rgba(0,0,0,0.05); }
|
20 |
.stat-card-title { font-size: 16px; font-weight: 500; color: #9ca3af !important; margin-bottom: 8px; }
|
|
|
34 |
self.demo = self._build_ui()
|
35 |
|
36 |
def _build_ui(self) -> gr.Blocks:
|
37 |
+
"""Defines, arranges, and connects all UI components and logic."""
|
38 |
+
with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="AI Data Explorer Pro") as demo:
|
|
|
|
|
|
|
|
|
39 |
state_var = gr.State({})
|
40 |
+
|
41 |
# --- Component Definition ---
|
42 |
# Sidebar
|
43 |
cockpit_btn = gr.Button("π Data Cockpit", elem_classes="selected", elem_id="cockpit")
|
|
|
49 |
suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False)
|
50 |
|
51 |
# Cockpit
|
52 |
+
rows_stat, cols_stat = gr.Textbox("0", interactive=False, elem_classes="stat-card-value", show_label=False), gr.Textbox("0", interactive=False, elem_classes="stat-card-value", show_label=False)
|
53 |
+
quality_stat, time_cols_stat = gr.Textbox("0%", interactive=False, elem_classes="stat-card-value", show_label=False), gr.Textbox("0", interactive=False, elem_classes="stat-card-value", show_label=False)
|
54 |
suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
|
55 |
|
56 |
# Deep Dive
|
|
|
59 |
y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)", visible=False, interactive=False)
|
60 |
add_plot_btn = gr.Button("Add to Dashboard", variant="primary", interactive=False)
|
61 |
clear_plots_btn = gr.Button("Clear Dashboard")
|
62 |
+
dashboard_gallery = gr.Gallery(label="π Your Custom Dashboard", height="auto", columns=[1, 2], preview=True)
|
63 |
|
64 |
# Co-pilot
|
65 |
+
chatbot = gr.Chatbot(height=500, label="Conversation", show_copy_button=True, avatar_images=("user.png", "bot.png"))
|
66 |
copilot_explanation = gr.Markdown(visible=False, elem_classes="explanation-block")
|
67 |
copilot_code = gr.Code(language="python", visible=False, label="Executed Code")
|
68 |
copilot_plot = gr.Plot(visible=False, label="Generated Visualization")
|
|
|
73 |
# --- Layout Arrangement ---
|
74 |
with gr.Row():
|
75 |
with gr.Column(scale=1, elem_classes="sidebar"):
|
76 |
+
gr.Markdown("## π AI Explorer Pro", elem_id="app-title"); cockpit_btn; deep_dive_btn; copilot_btn; gr.Markdown("---")
|
77 |
file_input; status_output; gr.Markdown("---"); api_key_input; suggestion_btn
|
78 |
with gr.Column(scale=4):
|
79 |
welcome_page = gr.Column(visible=True)
|
80 |
with welcome_page:
|
81 |
gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV file** and **enter your Gemini API key** to begin your analysis.")
|
|
|
82 |
|
83 |
cockpit_page = gr.Column(visible=False)
|
84 |
with cockpit_page:
|
|
|
103 |
with gr.Accordion("AI's Detailed Response", open=True): copilot_explanation; copilot_code; copilot_plot; copilot_table
|
104 |
with gr.Row(): chat_input; chat_submit_btn
|
105 |
|
106 |
+
# --- Event Handlers Registration ---
|
107 |
+
pages = [welcome_page, cockpit_page, deep_dive_page, copilot_page]
|
108 |
nav_buttons = [cockpit_btn, deep_dive_btn, copilot_btn]
|
109 |
|
110 |
for i, btn in enumerate(nav_buttons):
|
111 |
+
btn.click(lambda id=btn.elem_id: self._switch_page(id, pages), outputs=pages).then(
|
112 |
+
lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons)
|
|
|
|
|
|
|
113 |
|
114 |
file_input.upload(self.load_and_process_file, inputs=[file_input], outputs=[
|
115 |
state_var, status_output, welcome_page, cockpit_page,
|
116 |
rows_stat, cols_stat, quality_stat, time_cols_stat,
|
117 |
x_col_dd, y_col_dd, add_plot_btn
|
118 |
+
]).then(lambda: self._switch_page("cockpit", pages), outputs=pages).then(
|
119 |
+
lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons)
|
120 |
|
121 |
api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[api_key_input], outputs=[suggestion_btn])
|
|
|
122 |
plot_type_dd.change(self._update_plot_controls, inputs=[plot_type_dd], outputs=[y_col_dd])
|
123 |
add_plot_btn.click(self.add_plot_to_dashboard, inputs=[state_var, x_col_dd, y_col_dd, plot_type_dd], outputs=[state_var, dashboard_gallery])
|
124 |
clear_plots_btn.click(self.clear_dashboard, inputs=[state_var], outputs=[state_var, dashboard_gallery])
|
|
|
125 |
suggestion_btn.click(self.get_ai_suggestions, inputs=[state_var, api_key_input], outputs=suggestion_buttons)
|
126 |
+
|
127 |
for btn in suggestion_buttons:
|
128 |
+
btn.click(self.handle_suggestion_click, inputs=[btn], outputs=[welcome_page, cockpit_page, deep_dive_page, copilot_page, chat_input]) \
|
129 |
+
.then(lambda: self._switch_page("co-pilot", pages), outputs=pages) \
|
130 |
+
.then(lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")), outputs=nav_buttons)
|
131 |
|
132 |
chat_submit_btn.click(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
|
133 |
chat_input.submit(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
|
|
|
135 |
return demo
|
136 |
|
137 |
def launch(self):
|
|
|
138 |
self.demo.launch(debug=True)
|
139 |
|
140 |
+
def _switch_page(self, page_id: str, all_pages: List) -> List[gr.update]:
|
141 |
+
visibility_updates = [gr.update(visible=False)] * len(all_pages)
|
142 |
+
if page_id == "cockpit": visibility_updates[1] = gr.update(visible=True)
|
143 |
+
elif page_id == "deep_dive": visibility_updates[2] = gr.update(visible=True)
|
144 |
+
elif page_id == "co-pilot": visibility_updates[3] = gr.update(visible=True)
|
145 |
+
return visibility_updates
|
146 |
|
147 |
def _update_plot_controls(self, plot_type: str) -> gr.update:
|
148 |
return gr.update(visible=plot_type in ['scatter', 'box'])
|
|
|
150 |
def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]:
|
151 |
try:
|
152 |
df = pd.read_csv(file_obj.name, low_memory=False)
|
|
|
|
|
|
|
|
|
153 |
metadata = self._extract_dataset_metadata(df)
|
154 |
state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
|
|
|
155 |
rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
|
156 |
+
return (state, f"β
**{os.path.basename(file_obj.name)}** loaded.", gr.update(visible=False), gr.update(visible=True),
|
|
|
157 |
f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}",
|
158 |
gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True))
|
159 |
except Exception as e:
|
|
|
166 |
'numeric_cols': df.select_dtypes(include=np.number).columns.tolist(),
|
167 |
'categorical_cols': df.select_dtypes(include=['object', 'category']).columns.tolist(),
|
168 |
'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(),
|
169 |
+
'dtypes_head': df.head(3).to_string(),
|
170 |
+
'data_quality': quality} # <--- CRITICAL FIX: KEY ADDED HERE
|
171 |
|
172 |
def add_plot_to_dashboard(self, state: Dict, x_col: str, y_col: Optional[str], plot_type: str) -> Tuple[Dict, List]:
|
173 |
+
if not x_col: gr.Warning("Please select at least an X-axis column."); return state, state.get('dashboard_plots', [])
|
|
|
174 |
df = state['df']
|
175 |
title = f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col and plot_type in ['box', 'scatter'] else f"Distribution of {x_col}"
|
176 |
try:
|
|
|
183 |
if fig:
|
184 |
fig.update_layout(template="plotly_dark"); state['dashboard_plots'].append(fig); gr.Info(f"Added '{title}' to the dashboard.")
|
185 |
return state, state['dashboard_plots']
|
186 |
+
except Exception as e: gr.Error(f"Plotting Error: {e}"); return state, state.get('dashboard_plots', [])
|
|
|
187 |
|
188 |
def clear_dashboard(self, state: Dict) -> Tuple[Dict, List]:
|
189 |
state['dashboard_plots'] = []; gr.Info("Dashboard cleared."); return state, []
|
190 |
|
191 |
def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]:
|
192 |
+
if not api_key: gr.Warning("API Key is required."); return [gr.update(visible=False)]*5
|
193 |
if not state: gr.Warning("Please load data first."); return [gr.update(visible=False)]*5
|
194 |
+
metadata, prompt = state['metadata'], f"From columns {metadata['columns']}, generate 4 impactful analytical questions. Return ONLY a JSON list of strings."
|
|
|
195 |
try:
|
196 |
genai.configure(api_key=api_key)
|
197 |
suggestions = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
|
|
|
199 |
except Exception as e: gr.Error(f"AI Suggestion Error: {e}"); return [gr.update(visible=False)]*5
|
200 |
|
201 |
def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]:
|
202 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), question
|
203 |
|
204 |
def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) -> Any:
|
205 |
+
if not user_message.strip(): gr.Warning("Message is empty."); return history, *[gr.update()]*4
|
206 |
if not api_key or not state:
|
207 |
msg = "I need a Gemini API key and a dataset to work."; history.append((user_message, msg)); return history, *[gr.update(visible=False)]*4
|
208 |
|
209 |
history.append((user_message, "Thinking... π€")); yield history, *[gr.update(visible=False)]*4
|
210 |
|
211 |
+
metadata, prompt = state['metadata'], f"""You are 'Chief Data Scientist', an expert AI analyst. Your goal is to answer a user's question about a pandas DataFrame (`df`) by writing and executing Python code.
|
212 |
**Instructions:**
|
213 |
+
1. **Analyze:** Understand the user's intent. Infer the best plot type if not specified.
|
214 |
+
2. **Plan:** Briefly explain your plan of attack.
|
215 |
+
3. **Code:** Write Python code. Use `fig` for plots (with `template='plotly_dark'`) and `result_df` for tables.
|
216 |
+
4. **Insight:** Provide a one-sentence business insight.
|
217 |
+
5. **Respond ONLY with a single JSON object with keys: "plan", "code", "insight".**
|
|
|
218 |
**Metadata:** {metadata['dtypes_head']}
|
219 |
**User Question:** "{user_message}"
|
220 |
"""
|