File size: 7,733 Bytes
03e932b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05989bf
 
03e932b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import gradio as gr
import base64
import os
import re
from io import BytesIO
from PIL import Image
from huggingface_hub import InferenceClient
from mistralai import Mistral
from feifeilib.feifeichat import feifeichat  # Assuming this utility is still relevant or replace with SmartDocAnalyzer logic as needed.

# Initialize Hugging Face inference clients
client = InferenceClient(api_key=os.getenv('HF_TOKEN'))
client.headers["x-use-cache"] = "0"

api_key = os.getenv("MISTRAL_API_KEY")
Mistralclient = Mistral(api_key=api_key)

# Gradio interface setup for SmartDocAnalyzer
SmartDocAnalyzer = gr.ChatInterface(
    feifeichat,  # This should be replaced with a suitable function for SmartDocAnalyzer if needed.
    type="messages",
    multimodal=True,
    additional_inputs=[
        gr.Checkbox(label="Enable Analyzer Mode", value=True),
        gr.Dropdown(
            [
                "meta-llama/Llama-3.3-70B-Instruct",
                "CohereForAI/c4ai-command-r-plus-08-2024",
                "Qwen/Qwen2.5-72B-Instruct",
                "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
                "NousResearch/Hermes-3-Llama-3.1-8B",
                "mistralai/Mistral-Nemo-Instruct-2411",
                "microsoft/phi-4"
            ],
            value="mistralai/Mistral-Nemo-Instruct-2411",
            show_label=False,
            container=False
        ),
        gr.Radio(
            ["pixtral", "Vision"],
            value="pixtral",
            show_label=False,
            container=False
        )
    ],
    title="SmartDocAnalyzer",
    description="An advanced document analysis tool powered by AI."
)

SmartDocAnalyzer.launch()

def encode_image(image_path):
    """
    Encode the image at the given path to a base64 JPEG.
    Resizes image height to 512 pixels while maintaining aspect ratio.
    """
    try:
        image = Image.open(image_path).convert("RGB")
        base_height = 512
        h_percent = (base_height / float(image.size[1]))
        w_size = int((float(image.size[0]) * float(h_percent)))
        image = image.resize((w_size, base_height), Image.LANCZOS)
        buffered = BytesIO()
        image.save(buffered, format="JPEG")
        return base64.b64encode(buffered.getvalue()).decode("utf-8")
    except FileNotFoundError:
        print(f"Error: The file {image_path} was not found.")
    except Exception as e:
        print(f"Error: {e}")
    return None

def feifeiprompt(feifei_select=True, message_text="", history=""):
    """
    Constructs a prompt for the chatbot based on message text and history.
    Enhancements for SmartDocAnalyzer context can be added here.
    """
    input_prompt = []
    # Special handling for drawing requests
    if message_text.startswith("画") or message_text.startswith("draw"):
        feifei_photo = (
            "You are FeiFei. Background: FeiFei was born in Tokyo and is a natural-born photographer, "
            "hailing from a family with a long history in photography... [truncated for brevity]"
        )
        message_text = message_text.replace("画", "").replace("draw", "")
        message_text = f"提示词是'{message_text}',根据提示词帮我生成一张高质量照片的一句话英文回复"
        system_prompt = {"role": "system", "content": feifei_photo}
        user_input_part = {"role": "user", "content": str(message_text)}
        return [system_prompt, user_input_part]

    # Default prompt construction for FeiFei character
    if feifei_select:
        feifei = (
            "[Character Name]: Aifeifei (AI Feifei) [Gender]: Female [Age]: 19 years old ... "
            "[Identity]: User's virtual girlfriend"
        )
        system_prompt = {"role": "system", "content": feifei}
        user_input_part = {"role": "user", "content": str(message_text)}

        pattern = re.compile(r"gradio")
        if history:
            history = [item for item in history if not pattern.search(str(item["content"]))]
            input_prompt = [system_prompt] + history + [user_input_part]
        else:
            input_prompt = [system_prompt, user_input_part]
    else:
        input_prompt = [{"role": "user", "content": str(message_text)}]

    return input_prompt

def feifeiimgprompt(message_files, message_text, image_mod):
    """
    Handles image-based prompts for either 'Vision' or 'pixtral' modes.
    """
    message_file = message_files[0]
    base64_image = encode_image(message_file)
    if base64_image is None:
        return

    # Vision mode using meta-llama model
    if image_mod == "Vision":
        messages = [{
            "role": "user",
            "content": [
                {"type": "text", "text": message_text},
                {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
            ]
        }]
        stream = client.chat.completions.create(
            model="meta-llama/Llama-3.2-11B-Vision-Instruct",
            messages=messages,
            max_tokens=500,
            stream=True
        )
        temp = ""
        for chunk in stream:
            if chunk.choices[0].delta.content is not None:
                temp += chunk.choices[0].delta.content
                yield temp
    # Pixtral mode using Mistral model
    else:
        model = "pixtral-large-2411"
        messages = [{
            "role": "user",
            "content": [
                {"type": "text", "text": message_text},
                {"type": "image_url", "image_url": f"data:image/jpeg;base64,{base64_image}"}
            ]
        }]
        partial_message = ""
        for chunk in Mistralclient.chat.stream(model=model, messages=messages):
            if chunk.data.choices[0].delta.content is not None:
                partial_message += chunk.data.choices[0].delta.content
                yield partial_message

def feifeichatmod(additional_dropdown, input_prompt):
    """
    Chooses the appropriate chat model based on the dropdown selection.
    """
    if additional_dropdown == "mistralai/Mistral-Nemo-Instruct-2411":
        model = "mistral-large-2411"
        stream_response = Mistralclient.chat.stream(model=model, messages=input_prompt)
        partial_message = ""
        for chunk in stream_response:
            if chunk.data.choices[0].delta.content is not None:
                partial_message += chunk.data.choices[0].delta.content
                yield partial_message
    else:
        stream = client.chat.completions.create(
            model=additional_dropdown,
            messages=input_prompt,
            temperature=0.5,
            max_tokens=1024,
            top_p=0.7,
            stream=True
        )
        temp = ""
        for chunk in stream:
            if chunk.choices[0].delta.content is not None:
                temp += chunk.choices[0].delta.content
                yield temp

def feifeichat(message, history, feifei_select, additional_dropdown, image_mod):
    """
    Main chat function that decides between image-based and text-based handling.
    This function can be further enhanced for SmartDocAnalyzer-specific logic.
    """
    message_text = message.get("text", "")
    message_files = message.get("files", [])

    if message_files:
        # Process image input
        yield from feifeiimgprompt(message_files, message_text, image_mod)
    else:
        # Process text input
        input_prompt = feifeiprompt(feifei_select, message_text, history)
        yield from feifeichatmod(additional_dropdown, input_prompt)

# Enhancement Note:
# For the SmartDocAnalyzer space, consider integrating document parsing,
# OCR functionalities, semantic analysis of documents, and more advanced
# error handling as needed. This template serves as a starting point.