Spaces:
Sleeping
Sleeping
File size: 7,926 Bytes
03e932b f9bd215 4d8b824 f9bd215 03e932b 4d8b824 03e932b 4d8b824 03e932b 4d8b824 03e932b f9bd215 03e932b f9bd215 4d8b824 f9bd215 4d8b824 f9bd215 4d8b824 f9bd215 03e932b f9bd215 4d8b824 f9bd215 4d8b824 f9bd215 4d8b824 f9bd215 4d8b824 f9bd215 4d8b824 f9bd215 03e932b f9bd215 03e932b f9bd215 4d8b824 f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 4d8b824 03e932b f9bd215 03e932b f9bd215 4d8b824 f9bd215 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import os
import re
import base64
from io import BytesIO
from functools import lru_cache
import gradio as gr
import pdfplumber # For PDF document parsing
import pytesseract # OCR for extracting text from images
from PIL import Image
from huggingface_hub import InferenceClient
from mistralai import Mistral
# Initialize clients that don't require heavy model loading
client = InferenceClient(api_key=os.getenv('HF_TOKEN'))
client.headers["x-use-cache"] = "0"
api_key = os.getenv("MISTRAL_API_KEY")
Mistralclient = Mistral(api_key=api_key)
### Lazy Loading and Caching for Transformers Pipelines ###
@lru_cache(maxsize=1)
def get_summarizer():
from transformers import pipeline
# Use a smaller model for faster loading
return pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
@lru_cache(maxsize=1)
def get_sentiment_analyzer():
from transformers import pipeline
return pipeline("sentiment-analysis")
@lru_cache(maxsize=1)
def get_ner_tagger():
from transformers import pipeline
return pipeline("ner")
### Helper Functions ###
def encode_image(image_path):
"""Resizes and encodes an image to base64."""
try:
image = Image.open(image_path).convert("RGB")
base_height = 512
h_percent = (base_height / float(image.size[1]))
w_size = int((float(image.size[0]) * float(h_percent)))
image = image.resize((w_size, base_height), Image.LANCZOS)
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
except Exception as e:
print(f"Image encoding error: {e}")
return None
def extract_text_from_document(file_path):
"""Extracts text from a PDF or image document using pdfplumber and OCR."""
text = ""
if file_path.lower().endswith(".pdf"):
try:
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
if text.strip():
return text.strip()
except Exception as e:
print(f"PDF parsing error: {e}")
# Fallback to OCR for non-PDF or if PDF parsing yields no text
try:
image = Image.open(file_path)
text = pytesseract.image_to_string(image)
except Exception as e:
print(f"OCR error: {e}")
return text.strip()
def perform_semantic_analysis(text, analysis_type):
"""Applies semantic analysis tasks to the provided text using cached pipelines."""
if analysis_type == "Summarization":
summarizer = get_summarizer()
return summarizer(text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
elif analysis_type == "Sentiment Analysis":
sentiment_analyzer = get_sentiment_analyzer()
return sentiment_analyzer(text)[0]
elif analysis_type == "Named Entity Recognition":
ner_tagger = get_ner_tagger()
return ner_tagger(text)
return text
def process_text_input(message_text, history, model_choice, analysis_type):
"""Processes text-based inputs using selected model and optional semantic analysis."""
if analysis_type and analysis_type != "None":
analysis_result = perform_semantic_analysis(message_text, analysis_type)
message_text += f"\n\n[Analysis Result]: {analysis_result}"
input_prompt = [{"role": "user", "content": message_text}]
if model_choice == "mistralai/Mistral-Nemo-Instruct-2411":
model = "mistral-large-2411"
stream_response = Mistralclient.chat.stream(model=model, messages=input_prompt)
for chunk in stream_response:
if chunk.data.choices[0].delta.content:
yield chunk.data.choices[0].delta.content
else:
stream = client.chat.completions.create(
model=model_choice,
messages=input_prompt,
temperature=0.5,
max_tokens=1024,
top_p=0.7,
stream=True
)
temp = ""
for chunk in stream:
if chunk.choices[0].delta.content:
temp += chunk.choices[0].delta.content
yield temp
def process_image_input(image_file, message_text, image_mod, model_choice, analysis_type):
"""Processes image-based inputs, applies OCR, and optional semantic analysis."""
# Save the uploaded image temporarily
temp_image_path = "temp_upload.jpg"
image_file.save(temp_image_path)
extracted_text = extract_text_from_document(temp_image_path)
if extracted_text:
message_text += f"\n\n[Extracted Text]: {extracted_text}"
if analysis_type and analysis_type != "None":
analysis_result = perform_semantic_analysis(extracted_text, analysis_type)
message_text += f"\n\n[Analysis Result]: {analysis_result}"
base64_image = encode_image(temp_image_path)
if not base64_image:
yield "Failed to process image."
return
messages = [{
"role": "user",
"content": [
{"type": "text", "text": message_text},
{"type": "image_url", "image_url": f"data:image/jpeg;base64,{base64_image}"}
]
}]
if image_mod == "Vision":
stream = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500,
stream=True
)
temp = ""
for chunk in stream:
if chunk.choices[0].delta.content:
temp += chunk.choices[0].delta.content
yield temp
else:
model = "pixtral-large-2411"
partial_message = ""
for chunk in Mistralclient.chat.stream(model=model, messages=messages):
if chunk.data.choices[0].delta.content:
partial_message += chunk.data.choices[0].delta.content
yield partial_message
def multimodal_response(message, history, analyzer_mode, model_choice, image_mod, analysis_type):
"""Main response function handling both text and image inputs with analysis."""
message_text = message.get("text", "")
message_files = message.get("files", [])
if message_files:
image_file = message_files[0]
yield from process_image_input(image_file, message_text, image_mod, model_choice, analysis_type)
else:
yield from process_text_input(message_text, history, model_choice, analysis_type)
# Set up the Gradio interface with user customization options
MultiModalAnalyzer = gr.ChatInterface(
fn=multimodal_response,
type="messages",
multimodal=True,
additional_inputs=[
gr.Checkbox(label="Enable Analyzer Mode", value=True),
gr.Dropdown(
choices=[
"meta-llama/Llama-3.3-70B-Instruct",
"CohereForAI/c4ai-command-r-plus-08-2024",
"Qwen/Qwen2.5-72B-Instruct",
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
"NousResearch/Hermes-3-Llama-3.1-8B",
"mistralai/Mistral-Nemo-Instruct-2411",
"microsoft/phi-4"
],
value="mistralai/Mistral-Nemo-Instruct-2411",
show_label=False,
container=False
),
gr.Radio(
choices=["pixtral", "Vision"],
value="pixtral",
show_label=False,
container=False
),
gr.Dropdown(
choices=["None", "Summarization", "Sentiment Analysis", "Named Entity Recognition"],
value="None",
label="Select Analysis Type",
container=False
)
],
title="MultiModal Analyzer",
description="Upload documents or images, select a model and analysis type to interact with your content."
)
MultiModalAnalyzer.launch()
|