File size: 7,926 Bytes
03e932b
 
f9bd215
4d8b824
 
 
f9bd215
 
 
03e932b
 
 
 
4d8b824
03e932b
 
4d8b824
03e932b
 
 
4d8b824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03e932b
 
f9bd215
03e932b
 
 
 
 
 
 
 
 
 
f9bd215
 
 
 
4d8b824
f9bd215
 
 
 
 
4d8b824
 
 
 
 
f9bd215
 
 
4d8b824
f9bd215
 
 
 
 
 
03e932b
f9bd215
4d8b824
f9bd215
4d8b824
f9bd215
 
4d8b824
f9bd215
 
4d8b824
f9bd215
 
 
 
4d8b824
f9bd215
 
 
03e932b
f9bd215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03e932b
f9bd215
4d8b824
 
f9bd215
 
 
 
 
 
 
 
 
 
 
 
 
03e932b
 
f9bd215
 
 
 
 
 
 
 
03e932b
 
 
 
 
 
 
 
 
f9bd215
03e932b
 
 
 
 
 
f9bd215
03e932b
 
 
f9bd215
4d8b824
03e932b
 
 
 
f9bd215
 
03e932b
f9bd215
 
4d8b824
f9bd215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import re
import base64
from io import BytesIO
from functools import lru_cache

import gradio as gr
import pdfplumber  # For PDF document parsing
import pytesseract  # OCR for extracting text from images
from PIL import Image
from huggingface_hub import InferenceClient
from mistralai import Mistral

# Initialize clients that don't require heavy model loading
client = InferenceClient(api_key=os.getenv('HF_TOKEN'))
client.headers["x-use-cache"] = "0"

api_key = os.getenv("MISTRAL_API_KEY")
Mistralclient = Mistral(api_key=api_key)

### Lazy Loading and Caching for Transformers Pipelines ###

@lru_cache(maxsize=1)
def get_summarizer():
    from transformers import pipeline
    # Use a smaller model for faster loading
    return pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")

@lru_cache(maxsize=1)
def get_sentiment_analyzer():
    from transformers import pipeline
    return pipeline("sentiment-analysis")

@lru_cache(maxsize=1)
def get_ner_tagger():
    from transformers import pipeline
    return pipeline("ner")

### Helper Functions ###

def encode_image(image_path):
    """Resizes and encodes an image to base64."""
    try:
        image = Image.open(image_path).convert("RGB")
        base_height = 512
        h_percent = (base_height / float(image.size[1]))
        w_size = int((float(image.size[0]) * float(h_percent)))
        image = image.resize((w_size, base_height), Image.LANCZOS)
        buffered = BytesIO()
        image.save(buffered, format="JPEG")
        return base64.b64encode(buffered.getvalue()).decode("utf-8")
    except Exception as e:
        print(f"Image encoding error: {e}")
        return None

def extract_text_from_document(file_path):
    """Extracts text from a PDF or image document using pdfplumber and OCR."""
    text = ""
    if file_path.lower().endswith(".pdf"):
        try:
            with pdfplumber.open(file_path) as pdf:
                for page in pdf.pages:
                    page_text = page.extract_text()
                    if page_text:
                        text += page_text + "\n"
            if text.strip():
                return text.strip()
        except Exception as e:
            print(f"PDF parsing error: {e}")
    
    # Fallback to OCR for non-PDF or if PDF parsing yields no text
    try:
        image = Image.open(file_path)
        text = pytesseract.image_to_string(image)
    except Exception as e:
        print(f"OCR error: {e}")
    return text.strip()

def perform_semantic_analysis(text, analysis_type):
    """Applies semantic analysis tasks to the provided text using cached pipelines."""
    if analysis_type == "Summarization":
        summarizer = get_summarizer()
        return summarizer(text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
    elif analysis_type == "Sentiment Analysis":
        sentiment_analyzer = get_sentiment_analyzer()
        return sentiment_analyzer(text)[0]
    elif analysis_type == "Named Entity Recognition":
        ner_tagger = get_ner_tagger()
        return ner_tagger(text)
    return text

def process_text_input(message_text, history, model_choice, analysis_type):
    """Processes text-based inputs using selected model and optional semantic analysis."""
    if analysis_type and analysis_type != "None":
        analysis_result = perform_semantic_analysis(message_text, analysis_type)
        message_text += f"\n\n[Analysis Result]: {analysis_result}"

    input_prompt = [{"role": "user", "content": message_text}]
    
    if model_choice == "mistralai/Mistral-Nemo-Instruct-2411":
        model = "mistral-large-2411"
        stream_response = Mistralclient.chat.stream(model=model, messages=input_prompt)
        for chunk in stream_response:
            if chunk.data.choices[0].delta.content:
                yield chunk.data.choices[0].delta.content
    else:
        stream = client.chat.completions.create(
            model=model_choice,
            messages=input_prompt,
            temperature=0.5,
            max_tokens=1024,
            top_p=0.7,
            stream=True
        )
        temp = ""
        for chunk in stream:
            if chunk.choices[0].delta.content:
                temp += chunk.choices[0].delta.content
                yield temp

def process_image_input(image_file, message_text, image_mod, model_choice, analysis_type):
    """Processes image-based inputs, applies OCR, and optional semantic analysis."""
    # Save the uploaded image temporarily
    temp_image_path = "temp_upload.jpg"
    image_file.save(temp_image_path)

    extracted_text = extract_text_from_document(temp_image_path)
    if extracted_text:
        message_text += f"\n\n[Extracted Text]: {extracted_text}"
        if analysis_type and analysis_type != "None":
            analysis_result = perform_semantic_analysis(extracted_text, analysis_type)
            message_text += f"\n\n[Analysis Result]: {analysis_result}"

    base64_image = encode_image(temp_image_path)
    if not base64_image:
        yield "Failed to process image."
        return

    messages = [{
        "role": "user",
        "content": [
            {"type": "text", "text": message_text},
            {"type": "image_url", "image_url": f"data:image/jpeg;base64,{base64_image}"}
        ]
    }]

    if image_mod == "Vision":
        stream = client.chat.completions.create(
            model="meta-llama/Llama-3.2-11B-Vision-Instruct",
            messages=messages,
            max_tokens=500,
            stream=True
        )
        temp = ""
        for chunk in stream:
            if chunk.choices[0].delta.content:
                temp += chunk.choices[0].delta.content
                yield temp
    else:
        model = "pixtral-large-2411"
        partial_message = ""
        for chunk in Mistralclient.chat.stream(model=model, messages=messages):
            if chunk.data.choices[0].delta.content:
                partial_message += chunk.data.choices[0].delta.content
                yield partial_message

def multimodal_response(message, history, analyzer_mode, model_choice, image_mod, analysis_type):
    """Main response function handling both text and image inputs with analysis."""
    message_text = message.get("text", "")
    message_files = message.get("files", [])

    if message_files:
        image_file = message_files[0]
        yield from process_image_input(image_file, message_text, image_mod, model_choice, analysis_type)
    else:
        yield from process_text_input(message_text, history, model_choice, analysis_type)

# Set up the Gradio interface with user customization options
MultiModalAnalyzer = gr.ChatInterface(
    fn=multimodal_response,
    type="messages",
    multimodal=True,
    additional_inputs=[
        gr.Checkbox(label="Enable Analyzer Mode", value=True),
        gr.Dropdown(
            choices=[
                "meta-llama/Llama-3.3-70B-Instruct",
                "CohereForAI/c4ai-command-r-plus-08-2024",
                "Qwen/Qwen2.5-72B-Instruct",
                "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
                "NousResearch/Hermes-3-Llama-3.1-8B",
                "mistralai/Mistral-Nemo-Instruct-2411",
                "microsoft/phi-4"
            ],
            value="mistralai/Mistral-Nemo-Instruct-2411",
            show_label=False,
            container=False
        ),
        gr.Radio(
            choices=["pixtral", "Vision"],
            value="pixtral",
            show_label=False,
            container=False
        ),
        gr.Dropdown(
            choices=["None", "Summarization", "Sentiment Analysis", "Named Entity Recognition"],
            value="None",
            label="Select Analysis Type",
            container=False
        )
    ],
    title="MultiModal Analyzer",
    description="Upload documents or images, select a model and analysis type to interact with your content."
)

MultiModalAnalyzer.launch()