Spaces:
Sleeping
Sleeping
File size: 6,074 Bytes
05989bf 9ea931b 05989bf 9ea931b 05989bf 9ea931b 05989bf 92bab75 05989bf 92bab75 05989bf 92bab75 05989bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import streamlit as st
import transformers
import altair as alt
import pandas as pd
import streamlit_authenticator as stauth
import bcrypt
from difflib import SequenceMatcher
# ------------------------------
# User Authentication Setup
# ------------------------------
# Manually hash the password using bcrypt
plain_password = "password123"
hashed_password = bcrypt.hashpw(plain_password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8')
# Configuration for authentication
config = {
'credentials': {
'usernames': {
'demo_user': {
'name': 'Demo User',
'password': hashed_password # use the manually hashed password
}
}
},
'cookie': {
'expiry_days': 30,
'key': 'some_signature_key',
'name': 'some_cookie_name'
},
'preauthorized': {
'emails': []
}
}
authenticator = stauth.Authenticate(
config['credentials'],
config['cookie']['name'],
config['cookie']['key'],
config['cookie']['expiry_days']
)
# Use positional arguments with a valid location parameter
name, authentication_status, username = authenticator.login('Login', 'main')
if authentication_status is None or authentication_status is False:
st.error('Authentication failed. Please refresh and try again.')
st.stop()
st.sidebar.write(f"Welcome *{name}*")
authenticator.logout('Logout', 'sidebar')
# ------------------------------
# Load Models
# ------------------------------
@st.cache_resource
def load_qwen():
return transformers.pipeline(
"text2text-generation",
model="Qwen/Qwen2.5-14B",
device_map="auto"
)
@st.cache_resource
def load_phi():
return transformers.pipeline(
"text-generation",
model="microsoft/phi-4",
model_kwargs={"torch_dtype": "auto"},
device_map="auto"
)
qwen_pipeline = load_qwen()
phi_pipeline = load_phi()
# ------------------------------
# Utility Functions
# ------------------------------
def summarize_document(document_text):
prompt = f"Summarize the following document and highlight key insights:\n\n{document_text}"
summary = qwen_pipeline(prompt, max_new_tokens=1024)[0]['generated_text']
return summary
def answer_question(summary, question):
prompt = f"Based on the following summary:\n\n{summary}\n\nAnswer the question: {question}"
answer = phi_pipeline(prompt, max_new_tokens=256)[0]['generated_text']
return answer
def find_similar_chunks(original, output):
matcher = SequenceMatcher(None, original, output)
segments = []
left = 0
for _, j, n in matcher.get_matching_blocks():
if left < j:
segments.append({'text': output[left:j], 'match': False})
segments.append({'text': output[j:j+n], 'match': True})
left = j+n
return segments
# ------------------------------
# Streamlit App Layout
# ------------------------------
st.title("SmartDoc Analyzer")
st.markdown("Analyze Financial & Health Documents with AI")
# Tabs for different functionalities
tabs = st.tabs(["Document Summarization", "Interactive Q&A", "Visualization & Data Extraction"])
# -------- Document Summarization Tab --------
with tabs[0]:
st.header("Document Summarization")
document_text = st.text_area("Paste Document Text:", height=300)
if st.button("Summarize Document"):
if document_text:
summary = summarize_document(document_text)
st.subheader("Summary")
st.write(summary)
# Save summary in session for use in Q&A tab
st.session_state['last_summary'] = summary
else:
st.warning("Please paste document text to summarize.")
# -------- Interactive Q&A Tab --------
with tabs[1]:
st.header("Interactive Q&A")
default_summary = st.session_state.get('last_summary', '')
summary_context = st.text_area("Summary Context:", value=default_summary, height=150)
question = st.text_input("Enter your question about the document:")
if st.button("Get Answer"):
if summary_context and question:
answer = answer_question(summary_context, question)
st.subheader("Answer")
st.write(answer)
# For session saving, one could store Q&A pairs in st.session_state or database.
else:
st.warning("Please provide both a summary context and a question.")
# -------- Visualization & Data Extraction Tab --------
with tabs[2]:
st.header("Visualization & Data Extraction")
st.subheader("Visualization Placeholder")
st.markdown("An interactive chart can be displayed here using Altair or Plotly.")
# Example static Altair chart (replace with dynamic data extraction logic)
data = pd.DataFrame({
'Year': [2019, 2020, 2021, 2022],
'Revenue': [150, 200, 250, 300]
})
chart = alt.Chart(data).mark_line(point=True).encode(
x='Year:O',
y='Revenue:Q',
tooltip=['Year', 'Revenue']
).interactive()
st.altair_chart(chart, use_container_width=True)
st.subheader("Data Extraction Placeholder")
st.markdown("Implement NLP techniques or model prompts to extract structured data here.")
# File uploader example for future data extraction features
uploaded_file = st.file_uploader("Upload a document file for extraction", type=["pdf", "docx", "txt"])
if uploaded_file is not None:
st.info("File uploaded successfully. Data extraction logic would process this file.")
# Add logic to extract tables, key figures, etc. from the uploaded file.
# ------------------------------
# Safety & Compliance Layer (Placeholder)
# ------------------------------
st.sidebar.markdown("### Safety & Compliance")
st.sidebar.info(
"This tool provides AI-driven insights. "
"Please note that summaries and answers are for informational purposes only and should not be "
"considered professional financial or medical advice."
)
# ------------------------------
# End of Application
# ------------------------------
|