mgbam's picture
Update app.py
03e932b verified
raw
history blame
7.73 kB
import gradio as gr
import base64
import os
import re
from io import BytesIO
from PIL import Image
from huggingface_hub import InferenceClient
from mistralai import Mistral
from feifeilib.feifeichat import feifeichat # Assuming this utility is still relevant or replace with SmartDocAnalyzer logic as needed.
# Initialize Hugging Face inference clients
client = InferenceClient(api_key=os.getenv('HF_TOKEN'))
client.headers["x-use-cache"] = "0"
api_key = os.getenv("MISTRAL_API_KEY")
Mistralclient = Mistral(api_key=api_key)
# Gradio interface setup for SmartDocAnalyzer
SmartDocAnalyzer = gr.ChatInterface(
feifeichat, # This should be replaced with a suitable function for SmartDocAnalyzer if needed.
type="messages",
multimodal=True,
additional_inputs=[
gr.Checkbox(label="Enable Analyzer Mode", value=True),
gr.Dropdown(
[
"meta-llama/Llama-3.3-70B-Instruct",
"CohereForAI/c4ai-command-r-plus-08-2024",
"Qwen/Qwen2.5-72B-Instruct",
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
"NousResearch/Hermes-3-Llama-3.1-8B",
"mistralai/Mistral-Nemo-Instruct-2411",
"microsoft/phi-4"
],
value="mistralai/Mistral-Nemo-Instruct-2411",
show_label=False,
container=False
),
gr.Radio(
["pixtral", "Vision"],
value="pixtral",
show_label=False,
container=False
)
],
title="SmartDocAnalyzer",
description="An advanced document analysis tool powered by AI."
)
SmartDocAnalyzer.launch()
def encode_image(image_path):
"""
Encode the image at the given path to a base64 JPEG.
Resizes image height to 512 pixels while maintaining aspect ratio.
"""
try:
image = Image.open(image_path).convert("RGB")
base_height = 512
h_percent = (base_height / float(image.size[1]))
w_size = int((float(image.size[0]) * float(h_percent)))
image = image.resize((w_size, base_height), Image.LANCZOS)
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
except FileNotFoundError:
print(f"Error: The file {image_path} was not found.")
except Exception as e:
print(f"Error: {e}")
return None
def feifeiprompt(feifei_select=True, message_text="", history=""):
"""
Constructs a prompt for the chatbot based on message text and history.
Enhancements for SmartDocAnalyzer context can be added here.
"""
input_prompt = []
# Special handling for drawing requests
if message_text.startswith("画") or message_text.startswith("draw"):
feifei_photo = (
"You are FeiFei. Background: FeiFei was born in Tokyo and is a natural-born photographer, "
"hailing from a family with a long history in photography... [truncated for brevity]"
)
message_text = message_text.replace("画", "").replace("draw", "")
message_text = f"提示词是'{message_text}',根据提示词帮我生成一张高质量照片的一句话英文回复"
system_prompt = {"role": "system", "content": feifei_photo}
user_input_part = {"role": "user", "content": str(message_text)}
return [system_prompt, user_input_part]
# Default prompt construction for FeiFei character
if feifei_select:
feifei = (
"[Character Name]: Aifeifei (AI Feifei) [Gender]: Female [Age]: 19 years old ... "
"[Identity]: User's virtual girlfriend"
)
system_prompt = {"role": "system", "content": feifei}
user_input_part = {"role": "user", "content": str(message_text)}
pattern = re.compile(r"gradio")
if history:
history = [item for item in history if not pattern.search(str(item["content"]))]
input_prompt = [system_prompt] + history + [user_input_part]
else:
input_prompt = [system_prompt, user_input_part]
else:
input_prompt = [{"role": "user", "content": str(message_text)}]
return input_prompt
def feifeiimgprompt(message_files, message_text, image_mod):
"""
Handles image-based prompts for either 'Vision' or 'pixtral' modes.
"""
message_file = message_files[0]
base64_image = encode_image(message_file)
if base64_image is None:
return
# Vision mode using meta-llama model
if image_mod == "Vision":
messages = [{
"role": "user",
"content": [
{"type": "text", "text": message_text},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
]
}]
stream = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500,
stream=True
)
temp = ""
for chunk in stream:
if chunk.choices[0].delta.content is not None:
temp += chunk.choices[0].delta.content
yield temp
# Pixtral mode using Mistral model
else:
model = "pixtral-large-2411"
messages = [{
"role": "user",
"content": [
{"type": "text", "text": message_text},
{"type": "image_url", "image_url": f"data:image/jpeg;base64,{base64_image}"}
]
}]
partial_message = ""
for chunk in Mistralclient.chat.stream(model=model, messages=messages):
if chunk.data.choices[0].delta.content is not None:
partial_message += chunk.data.choices[0].delta.content
yield partial_message
def feifeichatmod(additional_dropdown, input_prompt):
"""
Chooses the appropriate chat model based on the dropdown selection.
"""
if additional_dropdown == "mistralai/Mistral-Nemo-Instruct-2411":
model = "mistral-large-2411"
stream_response = Mistralclient.chat.stream(model=model, messages=input_prompt)
partial_message = ""
for chunk in stream_response:
if chunk.data.choices[0].delta.content is not None:
partial_message += chunk.data.choices[0].delta.content
yield partial_message
else:
stream = client.chat.completions.create(
model=additional_dropdown,
messages=input_prompt,
temperature=0.5,
max_tokens=1024,
top_p=0.7,
stream=True
)
temp = ""
for chunk in stream:
if chunk.choices[0].delta.content is not None:
temp += chunk.choices[0].delta.content
yield temp
def feifeichat(message, history, feifei_select, additional_dropdown, image_mod):
"""
Main chat function that decides between image-based and text-based handling.
This function can be further enhanced for SmartDocAnalyzer-specific logic.
"""
message_text = message.get("text", "")
message_files = message.get("files", [])
if message_files:
# Process image input
yield from feifeiimgprompt(message_files, message_text, image_mod)
else:
# Process text input
input_prompt = feifeiprompt(feifei_select, message_text, history)
yield from feifeichatmod(additional_dropdown, input_prompt)
# Enhancement Note:
# For the SmartDocAnalyzer space, consider integrating document parsing,
# OCR functionalities, semantic analysis of documents, and more advanced
# error handling as needed. This template serves as a starting point.