File size: 18,511 Bytes
4abfaf0
 
 
c984bb4
9826cfc
886d0b0
fe7d37a
4abfaf0
 
 
 
 
ce507ec
4abfaf0
 
ce507ec
 
 
a1354f4
4abfaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
fe7d37a
4abfaf0
fe7d37a
 
4abfaf0
ce507ec
1c5c923
4abfaf0
 
 
 
886d0b0
4abfaf0
886d0b0
4abfaf0
 
 
 
 
 
 
 
 
 
8e26c00
886d0b0
 
 
 
 
 
 
 
4abfaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db01582
4abfaf0
 
 
 
 
 
 
 
 
 
db01582
4abfaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e26c00
 
4abfaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c4b816
4abfaf0
 
 
 
7ce8888
 
4abfaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e26c00
4abfaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e26c00
4abfaf0
8e26c00
4abfaf0
 
 
 
 
 
 
 
6c4b816
4abfaf0
 
 
 
 
 
 
 
 
7ce8888
4abfaf0
 
 
 
 
 
 
 
 
 
 
 
7ce8888
4abfaf0
 
 
 
6c4b816
4abfaf0
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# storyverse_weaver_streamlit/app_st.py (example name)
import streamlit as st
from PIL import Image, ImageDraw, ImageFont
import os
import time
import random

# --- Assuming your core logic is in a sibling 'core' directory ---
# You might need to adjust sys.path if running locally vs. deployed
# import sys
# sys.path.append(os.path.join(os.path.dirname(__file__), '..')) # If core is one level up

from core.llm_services import initialize_text_llms, is_gemini_text_ready, is_hf_text_ready, generate_text_gemini, generate_text_hf
from core.image_services import initialize_image_llms, is_dalle_ready, is_hf_image_api_ready, generate_image_dalle, generate_image_hf_model, ImageGenResponse
from core.story_engine import Story, Scene # Your existing Story and Scene classes
from prompts.narrative_prompts import get_narrative_system_prompt, format_narrative_user_prompt
from prompts.image_style_prompts import STYLE_PRESETS, COMMON_NEGATIVE_PROMPTS, format_image_generation_prompt
from core.utils import basic_text_cleanup

# --- Initialize Services ONCE ---
# Use Streamlit's caching for resource-heavy initializations if they don't depend on session state
@st.cache_resource # Caches the result across sessions/reruns if inputs don't change
def load_ai_services():
    print("--- Initializing AI Services (Streamlit Cache Resource) ---")
    initialize_text_llms()
    initialize_image_llms()
    # Return status flags to be stored in session_state or used directly
    return {
        "gemini_text_ready": is_gemini_text_ready(),
        "hf_text_ready": is_hf_text_ready(),
        "dalle_image_ready": is_dalle_ready(),
        "hf_image_ready": is_hf_image_api_ready()
    }

ai_services_status = load_ai_services()

# --- Application Configuration (Models, Defaults) ---
# (Similar logic to your Gradio app.py for populating TEXT_MODELS, IMAGE_PROVIDERS etc.)
TEXT_MODELS = {}
UI_DEFAULT_TEXT_MODEL_KEY = None
# ... (Populate based on ai_services_status["gemini_text_ready"], ai_services_status["hf_text_ready"]) ...
if ai_services_status["gemini_text_ready"]: TEXT_MODELS["✨ Gemini 1.5 Flash (Narrate)"] = {"id": "gemini-1.5-flash-latest", "type": "gemini"} # etc.
if ai_services_status["hf_text_ready"]: TEXT_MODELS["Mistral 7B (Narrate via HF)"] = {"id": "mistralai/Mistral-7B-Instruct-v0.2", "type": "hf_text"} # etc.
if TEXT_MODELS: UI_DEFAULT_TEXT_MODEL_KEY = list(TEXT_MODELS.keys())[0] # Simplified default

IMAGE_PROVIDERS = {}
UI_DEFAULT_IMAGE_PROVIDER_KEY = None
# ... (Populate based on ai_services_status["dalle_image_ready"], ai_services_status["hf_image_ready"]) ...
if ai_services_status["dalle_image_ready"]: IMAGE_PROVIDERS["πŸ–ΌοΈ DALL-E 3"] = "dalle_3" #etc.
if ai_services_status["hf_image_ready"]: IMAGE_PROVIDERS["🎑 HF - SDXL Base"] = "hf_sdxl_base" #etc.
if IMAGE_PROVIDERS: UI_DEFAULT_IMAGE_PROVIDER_KEY = list(IMAGE_PROVIDERS.keys())[0] # Simplified default


# --- Helper: Placeholder Image (can be same as before) ---
@st.cache_data # Cache placeholder images
def create_placeholder_image_st(text="Processing...", size=(512, 512), color="#23233A", text_color="#E0E0FF"):
    # ... (same PIL logic as before) ...
    img = Image.new('RGB', size, color=color); draw = ImageDraw.Draw(img)
    try: font_path = "arial.ttf" if os.path.exists("arial.ttf") else None 
    except: font_path = None 
    try: font = ImageFont.truetype(font_path, 40) if font_path else ImageFont.load_default()
    except IOError: font = ImageFont.load_default()
    if hasattr(draw, 'textbbox'): bbox = draw.textbbox((0,0), text, font=font); tw, th = bbox[2]-bbox[0], bbox[3]-bbox[1]
    else: tw, th = draw.textsize(text, font=font) 
    draw.text(((size[0]-tw)/2, (size[1]-th)/2), text, font=font, fill=text_color); return img

# --- Initialize Session State ---
if 'story_object' not in st.session_state:
    st.session_state.story_object = Story()
if 'current_log' not in st.session_state:
    st.session_state.current_log = ["Welcome to StoryVerse Weaver (Streamlit Edition)!"]
if 'latest_scene_image' not in st.session_state:
    st.session_state.latest_scene_image = None
if 'latest_scene_narrative' not in st.session_state:
    st.session_state.latest_scene_narrative = "Describe your first scene to begin!"
if 'processing_scene' not in st.session_state:
    st.session_state.processing_scene = False

# --- Page Configuration (Do this ONCE at the top) ---
st.set_page_config(
    page_title="✨ StoryVerse Weaver ✨",
    page_icon="🌌",
    layout="wide", # "wide" or "centered"
    initial_sidebar_state="expanded" # "auto", "expanded", "collapsed"
)

# --- Custom CSS for Dark Theme "WOW" ---
# (You'd inject this using st.markdown(..., unsafe_allow_html=True) or a separate CSS file)
streamlit_omega_css = """
<style>
    /* Base dark theme */
    body { color: #D0D0E0; background-color: #0F0F1A; }
    .stApp { background-color: #0F0F1A; }
    h1, h2, h3, h4, h5, h6 { color: #C080F0; }
    .stTextInput > div > div > input, .stTextArea > div > div > textarea, .stSelectbox > div > div > select {
        background-color: #2A2A4A; color: #E0E0FF; border: 1px solid #4A4A6A; border-radius: 8px;
    }
    .stButton > button {
        background: linear-gradient(135deg, #7F00FF 0%, #E100FF 100%) !important;
        color: white !important; border: none !important; border-radius: 8px !important;
        padding: 0.5em 1em !important; font-weight: 600 !important;
        box-shadow: 0 4px 8px rgba(0,0,0,0.15) !important;
    }
    .stButton > button:hover { transform: scale(1.03) translateY(-1px); box-shadow: 0 8px 16px rgba(127,0,255,0.3) !important; }
    /* Add more specific styles for sidebar, expanders, image display etc. */
    .main .block-container { padding-top: 2rem; padding-bottom: 2rem; padding-left: 3rem; padding-right: 3rem; max-width: 1400px; margin: auto;}
    .stImage > img { border-radius: 12px; box-shadow: 0 6px 15px rgba(0,0,0,0.25); max-height: 600px;}
    .stExpander { background-color: #1A1A2E; border: 1px solid #2A2A4A; border-radius: 12px; margin-bottom: 1em;}
    .stExpander header { font-size: 1.1em; font-weight: 500; color: #D0D0FF;}
    .important-note { background-color: rgba(127,0,255,0.1); border-left: 5px solid #7F00FF; padding: 15px; margin-bottom:20px; color: #E0E0FF; border-radius: 6px;}
</style>
"""
st.markdown(streamlit_omega_css, unsafe_allow_html=True)


# --- Main App UI & Logic ---
st.markdown("<div align='center'><h1>✨ StoryVerse Weaver ✨</h1>\n<h3>Craft Immersive Multimodal Worlds with AI</h3></div>", unsafe_allow_html=True)
st.markdown("<div class='important-note'><strong>Welcome, Worldsmith!</strong> Describe your vision, choose your style, and let Omega help you weave captivating scenes with narrative and imagery. Ensure API keys (<code>STORYVERSE_...</code>) are correctly set in your environment/secrets!</div>", unsafe_allow_html=True)


# --- Sidebar for Inputs & Configuration ---
with st.sidebar:
    st.header("🎨 Scene Weaver Panel")
    
    with st.form("scene_input_form"):
        scene_prompt_text = st.text_area(
            "Scene Vision (Description, Dialogue, Action):", 
            height=200,
            placeholder="e.g., Amidst swirling cosmic dust, Captain Eva pilots her damaged starfighter..."
        )
        
        st.subheader("Visual Style")
        col_style1, col_style2 = st.columns(2)
        with col_style1:
            image_style_dropdown = st.selectbox("Style Preset:", options=["Default (Cinematic Realism)"] + sorted(list(STYLE_PRESETS.keys())), index=0)
        with col_style2:
            artist_style_text = st.text_input("Artistic Inspiration (Optional):", placeholder="e.g., Moebius")
        
        negative_prompt_text = st.text_area("Exclude from Image (Negative Prompt):", value=COMMON_NEGATIVE_PROMPTS, height=100)

        with st.expander("βš™οΈ Advanced AI Configuration", expanded=False):
            text_model_key = st.selectbox("Narrative AI Engine:", options=list(TEXT_MODELS.keys()), index=0 if UI_DEFAULT_TEXT_MODEL_KEY in TEXT_MODELS else (list(TEXT_MODELS.keys()).index(UI_DEFAULT_TEXT_MODEL_KEY) if UI_DEFAULT_TEXT_MODEL_KEY else 0) )
            image_provider_key = st.selectbox("Visual AI Engine:", options=list(IMAGE_PROVIDERS.keys()), index=0 if UI_DEFAULT_IMAGE_PROVIDER_KEY in IMAGE_PROVIDERS else (list(IMAGE_PROVIDERS.keys()).index(UI_DEFAULT_IMAGE_PROVIDER_KEY) if UI_DEFAULT_IMAGE_PROVIDER_KEY else 0) )
            narrative_length = st.selectbox("Narrative Detail:", options=["Short (1 paragraph)", "Medium (2-3 paragraphs)", "Detailed (4+ paragraphs)"], index=1)
            image_quality = st.selectbox("Image Detail/Style:", options=["Standard", "High Detail", "Sketch Concept"], index=0)
        
        submit_scene_button = st.form_submit_button("🌌 Weave This Scene!", use_container_width=True, type="primary", disabled=st.session_state.processing_scene)

    if st.button("🎲 Surprise Me!", use_container_width=True, disabled=st.session_state.processing_scene):
        sur_prompt, sur_style, sur_artist = surprise_me_func() # Assuming this is defined as before
        # Need to update the actual input widget values; Streamlit doesn't directly map outputs to inputs like Gradio's Examples
        # This requires a more involved way to update widget states, or just display the suggestion.
        # For simplicity, we'll just show what it would generate. A real app might use st.experimental_rerun or callbacks.
        st.info(f"Surprise Idea: Prompt='{sur_prompt}', Style='{sur_style}', Artist='{sur_artist}'\n(Copy these into the fields above!)")


    if st.button("πŸ—‘οΈ New Story", use_container_width=True, disabled=st.session_state.processing_scene):
        st.session_state.story_object = Story()
        st.session_state.current_log = ["Story Cleared. Ready for a new verse!"]
        st.session_state.latest_scene_image = None
        st.session_state.latest_scene_narrative = "## ✨ A New Story Begins ✨\nDescribe your first scene!"
        st.experimental_rerun() # Rerun the script to refresh the UI

    with st.expander("πŸ”§ AI Services Status", expanded=False):
        text_llm_ok, image_gen_ok = (ai_services_status["gemini_text_ready"] or ai_services_status["hf_text_ready"]), \
                                    (ai_services_status["dalle_image_ready"] or ai_services_status["hf_image_ready"])
        if not text_llm_ok and not image_gen_ok: st.error("CRITICAL: NO AI SERVICES CONFIGURED.")
        else:
            if text_llm_ok: st.success("Text Generation Service(s) Ready.")
            else: st.warning("Text Generation Service(s) NOT Ready.")
            if image_gen_ok: st.success("Image Generation Service(s) Ready.")
            else: st.warning("Image Generation Service(s) NOT Ready.")


# --- Main Display Area ---
st.markdown("---")
st.markdown("### πŸ–ΌοΈ **Your Evolving StoryVerse**", unsafe_allow_html=True) # For potential custom class via CSS

if st.session_state.processing_scene:
    st.info("🌌 Weaving your scene... Please wait.")
    # Could use st.spinner("Weaving your scene...")

# Display Latest Scene
if st.session_state.latest_scene_image or st.session_state.latest_scene_narrative != "Describe your first scene to begin!":
    st.subheader("🌠 Latest Scene")
    if st.session_state.latest_scene_image:
        st.image(st.session_state.latest_scene_image, use_column_width=True, caption="Latest Generated Image")
    st.markdown(st.session_state.latest_scene_narrative, unsafe_allow_html=True)
    st.markdown("---")


# Display Story Scroll (Gallery)
if st.session_state.story_object and st.session_state.story_object.scenes:
    st.subheader("πŸ“š Story Scroll")
    # Streamlit doesn't have a direct "Gallery" like Gradio. We display images in columns.
    num_columns = 3
    cols = st.columns(num_columns)
    scenes_for_gallery = st.session_state.story_object.get_all_scenes_for_gallery_display() # Ensure this returns (PIL.Image or None, caption)

    for i, (img, caption) in enumerate(scenes_for_gallery):
        with cols[i % num_columns]:
            if img:
                st.image(img, caption=caption if caption else f"Scene {i+1}", use_column_width=True)
            elif caption: # If no image but caption (e.g. error)
                st.caption(caption) # Display caption as text
else:
    st.caption("Your story scroll is empty. Weave your first scene!")


# Interaction Log
with st.expander("βš™οΈ Interaction Log", expanded=False):
    st.markdown("\n\n".join(st.session_state.current_log), unsafe_allow_html=True)


# --- Logic for Form Submission ---
if submit_scene_button and scene_prompt_text.strip(): # Check if form submitted and prompt is not empty
    st.session_state.processing_scene = True
    st.session_state.current_log.append(f"**πŸš€ New Scene Request - {time.strftime('%H:%M:%S')}**")
    st.experimental_rerun() # Rerun to show "processing" state and disable button

    # ---- This is where the main generation logic happens ----
    # It's similar to add_scene_to_story_orchestrator but updates session_state
    
    # 1. Generate Narrative
    current_narrative = f"Narrative Error: Init failed for '{scene_prompt_text[:30]}...'"
    text_model_info = TEXT_MODELS.get(text_model_key)
    if text_model_info and text_model_info["type"] != "none":
        system_p = get_narrative_system_prompt("default")
        prev_narrative = st.session_state.story_object.get_last_scene_narrative()
        user_p = format_narrative_user_prompt(scene_prompt_text, prev_narrative)
        st.session_state.current_log.append(f"  Narrative: Using {text_model_key} ({text_model_info['id']}).")
        text_response = None
        if text_model_info["type"] == "gemini" and ai_services_status["gemini_text_ready"]: text_response = generate_text_gemini(user_p, model_id=text_model_info["id"], system_prompt=system_p, max_tokens=768 if narrative_length.startswith("Detailed") else 400)
        elif text_model_info["type"] == "hf_text" and ai_services_status["hf_text_ready"]: text_response = generate_text_hf(user_p, model_id=text_model_info["id"], system_prompt=system_p, max_tokens=768 if narrative_length.startswith("Detailed") else 400)
        
        if text_response and text_response.success: current_narrative = basic_text_cleanup(text_response.text); st.session_state.current_log.append(f"  Narrative: Success.")
        elif text_response: current_narrative = f"**Narrative Error ({text_model_key}):** {text_response.error}"; st.session_state.current_log.append(f"  Narrative: FAILED - {text_response.error}")
        else: st.session_state.current_log.append(f"  Narrative: FAILED - No response from {text_model_key}.")
    else: current_narrative = "**Narrative Error:** Text model unavailable."; st.session_state.current_log.append(f"  Narrative: FAILED - Model '{text_model_key}' unavailable.")
    
    st.session_state.latest_scene_narrative = f"## Scene Idea: {scene_prompt_text}\n\n{current_narrative}"

    # 2. Generate Image
    generated_image_pil = None
    image_gen_error = None
    selected_image_provider_actual_type = IMAGE_PROVIDERS.get(image_provider_key)
    image_content_prompt = current_narrative if current_narrative and "Error" not in current_narrative else scene_prompt_text
    quality_kw = "ultra detailed, " if image_quality == "High Detail" else ("concept sketch, " if image_quality == "Sketch Concept" else "")
    full_img_prompt = format_image_generation_prompt(quality_kw + image_content_prompt[:350], image_style_dropdown, artist_style_text)
    st.session_state.current_log.append(f"  Image: Attempting with {image_provider_key} (type '{selected_image_provider_actual_type}').")

    if selected_image_provider_actual_type and selected_image_provider_actual_type != "none":
        img_response = None
        if selected_image_provider_actual_type.startswith("dalle_") and ai_services_status["dalle_image_ready"]:
            dalle_model = "dall-e-3" if selected_image_provider_actual_type == "dalle_3" else "dall-e-2"
            img_response = generate_image_dalle(full_img_prompt, model=dalle_model, quality="hd" if image_quality=="High Detail" else "standard")
        elif selected_image_provider_actual_type.startswith("hf_") and ai_services_status["hf_image_ready"]:
            hf_model_id = "stabilityai/stable-diffusion-xl-base-1.0"; iw,ih=768,768
            if selected_image_provider_actual_type == "hf_openjourney": hf_model_id="prompthero/openjourney";iw,ih=512,512
            img_response = generate_image_hf_model(full_img_prompt, model_id=hf_model_id, negative_prompt=negative_prompt_text or COMMON_NEGATIVE_PROMPTS, width=iw, height=ih)
        
        if img_response and img_response.success: generated_image_pil = img_response.image; st.session_state.current_log.append(f"  Image: Success from {img_response.provider}.")
        elif img_response: image_gen_error = f"**Image Error:** {img_response.error}"; st.session_state.current_log.append(f"  Image: FAILED - {img_response.error}")
        else: image_gen_error = "**Image Error:** No response/unknown issue."; st.session_state.current_log.append(f"  Image: FAILED - No response object.")
    else: image_gen_error = "**Image Error:** No valid provider."; st.session_state.current_log.append(f"  Image: FAILED - No provider configured.")

    st.session_state.latest_scene_image = generated_image_pil if generated_image_pil else create_placeholder_image("Image Gen Failed", color="#401010")

    # 3. Add to Story Object
    scene_err = None
    if image_gen_error and "**Narrative Error**" in current_narrative: scene_err = f"{current_narrative}\n{image_gen_error}"
    elif "**Narrative Error**" in current_narrative: scene_err = current_narrative
    elif image_gen_error: scene_err = image_gen_error
    
    st.session_state.story_object.add_scene_from_elements(
        user_prompt=scene_prompt_text, narrative_text=current_narrative, image=generated_image_pil,
        image_style_prompt=f"{image_style_dropdown}{f', by {artist_style_text}' if artist_style_text else ''}",
        image_provider=image_provider_key, error_message=scene_err
    )
    st.session_state.current_log.append(f"  Scene {st.session_state.story_object.current_scene_number} processed.")
    st.session_state.processing_scene = False
    st.experimental_rerun() # Rerun to update the main display with new scene and re-enable button

elif submit_scene_button and not scene_prompt_text.strip(): # If form submitted but prompt is empty
    st.warning("Please enter a scene vision/prompt!")