Spaces:
Sleeping
Sleeping
| # storyverse_weaver/app.py | |
| import gradio as gr | |
| import os | |
| import time | |
| import json | |
| from PIL import Image, ImageDraw, ImageFont | |
| import random | |
| import traceback | |
| # --- Core Logic Imports --- | |
| from core.llm_services import initialize_text_llms, is_gemini_text_ready, is_hf_text_ready, generate_text_gemini, generate_text_hf | |
| from core.image_services import initialize_image_llms, is_dalle_ready, is_hf_image_api_ready, generate_image_dalle, generate_image_hf_model, ImageGenResponse | |
| from core.story_engine import Story, Scene | |
| from prompts.narrative_prompts import get_narrative_system_prompt, format_narrative_user_prompt | |
| from prompts.image_style_prompts import STYLE_PRESETS, COMMON_NEGATIVE_PROMPTS, format_image_generation_prompt | |
| from core.utils import basic_text_cleanup | |
| # --- Initialize Services --- | |
| initialize_text_llms() | |
| initialize_image_llms() | |
| # --- Get API Readiness Status --- | |
| GEMINI_TEXT_IS_READY = is_gemini_text_ready() | |
| HF_TEXT_IS_READY = is_hf_text_ready() | |
| DALLE_IMAGE_IS_READY = is_dalle_ready() | |
| HF_IMAGE_IS_READY = is_hf_image_api_ready() | |
| # --- Application Configuration (Models, Defaults) --- | |
| TEXT_MODELS = {} | |
| UI_DEFAULT_TEXT_MODEL_KEY = None | |
| if GEMINI_TEXT_IS_READY: | |
| TEXT_MODELS["β¨ Gemini 1.5 Flash (Narrate)"] = {"id": "gemini-1.5-flash-latest", "type": "gemini"} | |
| TEXT_MODELS["Legacy Gemini 1.0 Pro (Narrate)"] = {"id": "gemini-1.0-pro-latest", "type": "gemini"} | |
| if HF_TEXT_IS_READY: | |
| # CORRECTED LINE from SyntaxError: | |
| TEXT_MODELS["Mistral 7B (Narrate via HF)"] = {"id": "mistralai/Mistral-7B-Instruct-v0.2", "type": "hf_text"} | |
| TEXT_MODELS["Gemma 2B (Narrate via HF)"] = {"id": "google/gemma-2b-it", "type": "hf_text"} | |
| if TEXT_MODELS: | |
| if GEMINI_TEXT_IS_READY and "β¨ Gemini 1.5 Flash (Narrate)" in TEXT_MODELS: | |
| UI_DEFAULT_TEXT_MODEL_KEY = "β¨ Gemini 1.5 Flash (Narrate)" | |
| elif HF_TEXT_IS_READY and "Mistral 7B (Narrate via HF)" in TEXT_MODELS: | |
| UI_DEFAULT_TEXT_MODEL_KEY = "Mistral 7B (Narrate via HF)" | |
| elif TEXT_MODELS: # Fallback to first available if preferred ones are not ready or not in list | |
| UI_DEFAULT_TEXT_MODEL_KEY = list(TEXT_MODELS.keys())[0] | |
| else: | |
| TEXT_MODELS["No Text Models Configured"] = {"id": "dummy_text_error", "type": "none"} | |
| UI_DEFAULT_TEXT_MODEL_KEY = "No Text Models Configured" | |
| IMAGE_PROVIDERS = {} | |
| UI_DEFAULT_IMAGE_PROVIDER_KEY = None | |
| if DALLE_IMAGE_IS_READY: | |
| IMAGE_PROVIDERS["πΌοΈ OpenAI DALL-E 3"] = "dalle_3" | |
| IMAGE_PROVIDERS["πΌοΈ OpenAI DALL-E 2 (Legacy)"] = "dalle_2" | |
| UI_DEFAULT_IMAGE_PROVIDER_KEY = "πΌοΈ OpenAI DALL-E 3" | |
| elif HF_IMAGE_IS_READY: | |
| IMAGE_PROVIDERS["π‘ HF - Stable Diffusion XL Base (Fallback)"] = "hf_sdxl_base" | |
| IMAGE_PROVIDERS["π HF - OpenJourney (Fallback)"] = "hf_openjourney" | |
| IMAGE_PROVIDERS["π HF - Stable Diffusion v1.5 (Fallback)"] = "hf_sd_1_5" | |
| UI_DEFAULT_IMAGE_PROVIDER_KEY = "π‘ HF - Stable Diffusion XL Base (Fallback)" | |
| if not IMAGE_PROVIDERS: | |
| IMAGE_PROVIDERS["No Image Providers Configured"] = "none" | |
| UI_DEFAULT_IMAGE_PROVIDER_KEY = "No Image Providers Configured" | |
| elif not UI_DEFAULT_IMAGE_PROVIDER_KEY and IMAGE_PROVIDERS : | |
| UI_DEFAULT_IMAGE_PROVIDER_KEY = list(IMAGE_PROVIDERS.keys())[0] | |
| # --- Gradio UI Theme and CSS --- | |
| omega_theme = gr.themes.Base( | |
| font=[gr.themes.GoogleFont("Lexend Deca"), "ui-sans-serif", "system-ui", "sans-serif"], | |
| primary_hue=gr.themes.colors.purple, secondary_hue=gr.themes.colors.pink, neutral_hue=gr.themes.colors.slate | |
| ).set( | |
| body_background_fill="#0F0F1A", block_background_fill="#1A1A2E", block_border_width="1px", | |
| block_border_color="#2A2A4A", block_label_background_fill="#2A2A4A", input_background_fill="#2A2A4A", | |
| input_border_color="#4A4A6A", button_primary_background_fill="linear-gradient(135deg, #7F00FF 0%, #E100FF 100%)", | |
| button_primary_text_color="white", button_secondary_background_fill="#4A4A6A", | |
| button_secondary_text_color="#E0E0FF", slider_color="#A020F0" | |
| ) | |
| omega_css = """ | |
| body, .gradio-container { background-color: #0F0F1A !important; color: #D0D0E0 !important; } | |
| .gradio-container { max-width: 1400px !important; margin: auto !important; border-radius: 20px; box-shadow: 0 10px 30px rgba(0,0,0,0.2); padding: 25px !important; border: 1px solid #2A2A4A;} | |
| .gr-panel, .gr-box, .gr-accordion { background-color: #1A1A2E !important; border: 1px solid #2A2A4A !important; border-radius: 12px !important; box-shadow: 0 4px 15px rgba(0,0,0,0.1);} | |
| .gr-markdown h1 { font-size: 2.8em !important; text-align: center; color: transparent; background: linear-gradient(135deg, #A020F0 0%, #E040FB 100%); -webkit-background-clip: text; background-clip: text; margin-bottom: 5px !important; letter-spacing: -1px;} | |
| .gr-markdown h3 { color: #C080F0 !important; text-align: center; font-weight: 400; margin-bottom: 25px !important;} | |
| .input-section-header { font-size: 1.6em; font-weight: 600; color: #D0D0FF; margin-top: 15px; margin-bottom: 8px; border-bottom: 2px solid #7F00FF; padding-bottom: 5px;} | |
| .output-section-header { font-size: 1.8em; font-weight: 600; color: #D0D0FF; margin-top: 15px; margin-bottom: 12px;} | |
| .gr-input input, .gr-input textarea, .gr-dropdown select, .gr-textbox textarea { background-color: #2A2A4A !important; color: #E0E0FF !important; border: 1px solid #4A4A6A !important; border-radius: 8px !important; padding: 10px !important;} | |
| .gr-button { border-radius: 8px !important; font-weight: 500 !important; transition: all 0.2s ease-in-out !important;} | |
| .gr-button-primary { padding-top: 10px !important; padding-bottom: 10px !important; } | |
| .gr-button-primary:hover { transform: scale(1.03) translateY(-1px) !important; box-shadow: 0 8px 16px rgba(127,0,255,0.3) !important; } | |
| .panel_image { border-radius: 12px !important; overflow: hidden; box-shadow: 0 6px 15px rgba(0,0,0,0.25) !important; background-color: #23233A;} | |
| .panel_image img { max-height: 600px !important; } | |
| .gallery_output { background-color: transparent !important; border: none !important; } | |
| .gallery_output .thumbnail-item { border-radius: 8px !important; box-shadow: 0 3px 8px rgba(0,0,0,0.2) !important; margin: 6px !important; transition: transform 0.2s ease; height: 180px !important; width: 180px !important;} | |
| .gallery_output .thumbnail-item:hover { transform: scale(1.05); } | |
| .status_text { font-weight: 500; padding: 12px 18px; text-align: center; border-radius: 8px; margin-top:12px; border: 1px solid transparent; font-size: 1.05em;} | |
| .error_text { background-color: #401010 !important; color: #FFB0B0 !important; border-color: #802020 !important; } | |
| .success_text { background-color: #104010 !important; color: #B0FFB0 !important; border-color: #208020 !important;} | |
| .processing_text { background-color: #102040 !important; color: #B0D0FF !important; border-color: #204080 !important;} | |
| .important-note { background-color: rgba(127,0,255,0.1); border-left: 5px solid #7F00FF; padding: 15px; margin-bottom:20px; color: #E0E0FF; border-radius: 6px;} | |
| .gr-tabitem { background-color: #1A1A2E !important; border-radius: 0 0 12px 12px !important; padding: 15px !important;} | |
| .gr-tab-button.selected { background-color: #2A2A4A !important; color: white !important; border-bottom: 3px solid #A020F0 !important; border-radius: 8px 8px 0 0 !important; font-weight: 600 !important;} | |
| .gr-tab-button { color: #A0A0C0 !important; border-radius: 8px 8px 0 0 !important;} | |
| .gr-accordion > .gr-block { border-top: 1px solid #2A2A4A !important; } | |
| .gr-markdown code { background-color: #2A2A4A !important; color: #C0C0E0 !important; padding: 0.2em 0.5em; border-radius: 4px; } | |
| .gr-markdown pre { background-color: #23233A !important; padding: 1em !important; border-radius: 6px !important; border: 1px solid #2A2A4A !important;} | |
| .gr-markdown pre > code { padding: 0 !important; background-color: transparent !important; } | |
| #surprise_button { background: linear-gradient(135deg, #ff7e5f 0%, #feb47b 100%) !important; font-weight:600 !important;} | |
| #surprise_button:hover { transform: scale(1.03) translateY(-1px) !important; box-shadow: 0 8px 16px rgba(255,126,95,0.3) !important; } | |
| """ | |
| # --- Helper: Placeholder Image Creation --- | |
| def create_placeholder_image(text="Processing...", size=(512, 512), color="#23233A", text_color="#E0E0FF"): | |
| img = Image.new('RGB', size, color=color); draw = ImageDraw.Draw(img) | |
| try: font_path = "arial.ttf" if os.path.exists("arial.ttf") else None | |
| except: font_path = None | |
| try: font = ImageFont.truetype(font_path, 40) if font_path else ImageFont.load_default() | |
| except IOError: font = ImageFont.load_default() | |
| if hasattr(draw, 'textbbox'): bbox = draw.textbbox((0,0), text, font=font); tw, th = bbox[2]-bbox[0], bbox[3]-bbox[1] | |
| else: tw, th = draw.textsize(text, font=font) | |
| draw.text(((size[0]-tw)/2, (size[1]-th)/2), text, font=font, fill=text_color); return img | |
| # --- StoryVerse Weaver Orchestrator --- | |
| def add_scene_to_story_orchestrator( | |
| current_story_obj: Story, scene_prompt_text: str, image_style_dropdown: str, artist_style_text: str, | |
| negative_prompt_text: str, text_model_key: str, image_provider_key: str, | |
| narrative_length: str, image_quality: str, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| start_time = time.time() | |
| if not current_story_obj: current_story_obj = Story() | |
| log_accumulator = [f"**π Scene {current_story_obj.current_scene_number + 1} - {time.strftime('%H:%M:%S')}**"] | |
| ret_story_state = current_story_obj | |
| ret_gallery = current_story_obj.get_all_scenes_for_gallery_display() | |
| ret_latest_image = None | |
| ret_latest_narrative_md_obj = gr.Markdown(value="## Processing...\nNarrative being woven...") | |
| ret_status_bar_html_obj = gr.HTML(value="<p class='processing_text status_text'>Processing...</p>") | |
| # ret_log_md will be built up | |
| # Initial yield for UI updates (buttons disabled by .then() chain) | |
| yield { | |
| output_status_bar: gr.HTML(value=f"<p class='processing_text status_text'>π Weaving Scene {current_story_obj.current_scene_number + 1}...</p>"), | |
| output_latest_scene_image: gr.Image(value=create_placeholder_image("π¨ Conjuring visuals...")), | |
| output_latest_scene_narrative: gr.Markdown(value=" Musing narrative..."), | |
| output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) | |
| } | |
| try: | |
| if not scene_prompt_text.strip(): | |
| raise ValueError("Scene prompt cannot be empty!") | |
| # --- 1. Generate Narrative Text --- | |
| progress(0.1, desc="βοΈ Crafting narrative...") | |
| narrative_text_generated = f"Narrative Error: Init failed." | |
| text_model_info = TEXT_MODELS.get(text_model_key) | |
| if text_model_info and text_model_info["type"] != "none": | |
| system_p = get_narrative_system_prompt("default") | |
| prev_narrative = current_story_obj.get_last_scene_narrative() | |
| user_p = format_narrative_user_prompt(scene_prompt_text, prev_narrative) | |
| log_accumulator.append(f" Narrative: Using {text_model_key} ({text_model_info['id']}). Length: {narrative_length}") | |
| text_response = None | |
| if text_model_info["type"] == "gemini": text_response = generate_text_gemini(user_p, model_id=text_model_info["id"], system_prompt=system_p, max_tokens=768 if narrative_length.startswith("Detailed") else 400) | |
| elif text_model_info["type"] == "hf_text": text_response = generate_text_hf(user_p, model_id=text_model_info["id"], system_prompt=system_p, max_tokens=768 if narrative_length.startswith("Detailed") else 400) | |
| if text_response and text_response.success: narrative_text_generated = basic_text_cleanup(text_response.text); log_accumulator.append(f" Narrative: Success.") | |
| elif text_response: narrative_text_generated = f"**Narrative Error ({text_model_key}):** {text_response.error}"; log_accumulator.append(f" Narrative: FAILED - {text_response.error}") | |
| else: log_accumulator.append(f" Narrative: FAILED - No response from {text_model_key}.") | |
| else: narrative_text_generated = "**Narrative Error:** Selected text model not available or misconfigured."; log_accumulator.append(f" Narrative: FAILED - Model '{text_model_key}' unavailable.") | |
| ret_latest_narrative_str_content = f"## Scene Idea: {scene_prompt_text}\n\n{narrative_text_generated}" | |
| ret_latest_narrative_md_obj = gr.Markdown(value=ret_latest_narrative_str_content) | |
| yield { output_latest_scene_narrative: ret_latest_narrative_md_obj, | |
| output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) } | |
| # --- 2. Generate Image --- | |
| progress(0.5, desc="π¨ Conjuring visuals...") | |
| image_generated_pil = None | |
| image_generation_error_message = None | |
| selected_image_provider_key_from_ui = image_provider_key | |
| selected_image_provider_type = IMAGE_PROVIDERS.get(selected_image_provider_key_from_ui) | |
| image_content_prompt_for_gen = narrative_text_generated if narrative_text_generated and "Error" not in narrative_text_generated else scene_prompt_text | |
| quality_keyword = "ultra detailed, intricate, masterpiece, " if image_quality == "High Detail" else ("concept sketch, line art, " if image_quality == "Sketch Concept" else "") | |
| full_image_prompt = format_image_generation_prompt(quality_keyword + image_content_prompt_for_gen[:350], image_style_dropdown, artist_style_text) | |
| log_accumulator.append(f" Image: Attempting with provider key '{selected_image_provider_key_from_ui}' (maps to type '{selected_image_provider_type}'). Style: {image_style_dropdown}.") | |
| if selected_image_provider_type and selected_image_provider_type != "none": | |
| image_response = None | |
| if selected_image_provider_type.startswith("dalle_"): | |
| if DALLE_IMAGE_IS_READY: | |
| dalle_model_version = "dall-e-3" if selected_image_provider_type == "dalle_3" else "dall-e-2" | |
| dalle_size = "1024x1024" | |
| dalle_quality_param = "hd" if image_quality=="High Detail" and dalle_model_version == "dall-e-3" else "standard" | |
| image_response = generate_image_dalle(full_image_prompt, model=dalle_model_version, size=dalle_size, quality=dalle_quality_param) | |
| else: image_generation_error_message = "**Image Error:** DALL-E selected but API not ready." | |
| elif selected_image_provider_type.startswith("hf_"): | |
| if HF_IMAGE_IS_READY: | |
| hf_model_id_to_call = "stabilityai/stable-diffusion-xl-base-1.0"; img_width, img_height = 768, 768 | |
| if selected_image_provider_type == "hf_openjourney": hf_model_id_to_call = "prompthero/openjourney"; img_width,img_height = 512,512 | |
| elif selected_image_provider_type == "hf_sd_1_5": hf_model_id_to_call = "runwayml/stable-diffusion-v1-5"; img_width,img_height = 512,512 | |
| image_response = generate_image_hf_model(full_image_prompt, model_id=hf_model_id_to_call, negative_prompt=negative_prompt_text or COMMON_NEGATIVE_PROMPTS, width=img_width, height=img_height) | |
| else: image_generation_error_message = "**Image Error:** HF Image Model selected but API not ready." | |
| else: image_generation_error_message = f"**Image Error:** Provider type '{selected_image_provider_type}' not handled." | |
| if image_response and image_response.success: image_generated_pil = image_response.image; log_accumulator.append(f" Image: Success from {image_response.provider} (Model: {image_response.model_id_used}).") | |
| elif image_response: image_generation_error_message = f"**Image Error ({image_response.provider} - {image_response.model_id_used}):** {image_response.error}"; log_accumulator.append(f" Image: FAILED - {image_response.error}") | |
| elif not image_generation_error_message: image_generation_error_message = f"**Image Error:** No response with {image_provider_key}." | |
| if not image_generated_pil and not image_generation_error_message: | |
| image_generation_error_message = "**Image Error:** No valid image provider configured or selected." | |
| log_accumulator.append(f" Image: FAILED - {image_generation_error_message}") | |
| ret_latest_image = image_generated_pil if image_generated_pil else create_placeholder_image("Image Gen Failed", color="#401010") | |
| yield { output_latest_scene_image: gr.Image(value=ret_latest_image), | |
| output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) } | |
| # --- 3. Add Scene to Story Object --- | |
| final_scene_error = None | |
| if image_generation_error_message and "**Narrative Error**" in narrative_text_generated : final_scene_error = f"{narrative_text_generated}\n{image_generation_error_message}" | |
| elif "**Narrative Error**" in narrative_text_generated: final_scene_error = narrative_text_generated | |
| elif image_generation_error_message: final_scene_error = image_generation_error_message | |
| current_story_obj.add_scene_from_elements( | |
| user_prompt=scene_prompt_text, | |
| narrative_text=narrative_text_generated if "**Narrative Error**" not in narrative_text_generated else "(Narrative gen failed)", | |
| image=image_generated_pil, | |
| image_style_prompt=f"{image_style_dropdown}{f', by {artist_style_text}' if artist_style_text and artist_style_text.strip() else ''}", | |
| image_provider=selected_image_provider_key_from_ui, | |
| error_message=final_scene_error | |
| ) | |
| ret_story_state = current_story_obj | |
| log_accumulator.append(f" Scene {current_story_obj.current_scene_number} processed and added.") | |
| # --- 4. Prepare Final Values for Return Tuple --- | |
| ret_gallery = current_story_obj.get_all_scenes_for_gallery_display() | |
| _ , latest_narr_for_display_final_str_temp = current_story_obj.get_latest_scene_details_for_display() | |
| ret_latest_narrative_md_obj = gr.Markdown(value=latest_narr_for_display_final_str_temp) | |
| status_html_str_temp = f"<p class='error_text status_text'>Scene {current_story_obj.current_scene_number} added with errors.</p>" if final_scene_error else f"<p class='success_text status_text'>π Scene {current_story_obj.current_scene_number} woven!</p>" | |
| ret_status_bar_html_obj = gr.HTML(value=status_html_str_temp) | |
| progress(1.0, desc="Scene Complete!") | |
| except ValueError as ve: | |
| log_accumulator.append(f"\n**INPUT/CONFIG ERROR:** {ve}") | |
| ret_status_bar_html_obj = gr.HTML(value=f"<p class='error_text status_text'>β CONFIGURATION ERROR: {ve}</p>") | |
| ret_latest_narrative_md_obj = gr.Markdown(value=f"## Error\n{ve}") | |
| except Exception as e: | |
| log_accumulator.append(f"\n**UNEXPECTED RUNTIME ERROR:** {type(e).__name__} - {e}\n{traceback.format_exc()}") | |
| ret_status_bar_html_obj = gr.HTML(value=f"<p class='error_text status_text'>β UNEXPECTED ERROR: {type(e).__name__}. Check logs.</p>") | |
| ret_latest_narrative_md_obj = gr.Markdown(value=f"## Unexpected Error\n{type(e).__name__}: {e}\nSee log for details.") | |
| current_total_time = time.time() - start_time | |
| log_accumulator.append(f" Cycle ended at {time.strftime('%H:%M:%S')}. Total time: {current_total_time:.2f}s") | |
| ret_log_md = gr.Markdown(value="\n".join(log_accumulator)) | |
| # This is the FINAL return. It must be a tuple matching the `outputs` list of engage_button.click() | |
| return ( | |
| ret_story_state, ret_gallery, ret_latest_image, | |
| ret_latest_narrative_md_obj, ret_status_bar_html_obj, ret_log_md | |
| ) | |
| def clear_story_state_ui_wrapper(): | |
| new_story = Story(); ph_img = create_placeholder_image("Blank canvas...", color="#1A1A2E", text_color="#A0A0C0") | |
| return (new_story, [(ph_img,"New StoryVerse...")], None, gr.Markdown("## β¨ New Story β¨"), gr.HTML("<p class='processing_text status_text'>π Story Cleared.</p>"), "Log Cleared.", "") | |
| def surprise_me_func(): | |
| themes = ["Cosmic Horror", "Solarpunk Utopia", "Mythic Fantasy", "Noir Detective"]; actions = ["unearths an artifact", "negotiates"]; settings = ["on a rogue planet", "in a city in a tree"]; prompt = f"A protagonist {random.choice(actions)} {random.choice(settings)}. Theme: {random.choice(themes)}."; style = random.choice(list(STYLE_PRESETS.keys())); artist = random.choice(["H.R. Giger", "Moebius", ""]*2); return prompt, style, artist | |
| def disable_buttons_for_processing(): | |
| return gr.Button(interactive=False), gr.Button(interactive=False) | |
| def enable_buttons_after_processing(): | |
| return gr.Button(interactive=True), gr.Button(interactive=True) | |
| # --- Gradio UI Definition --- | |
| with gr.Blocks(theme=omega_theme, css=omega_css, title="β¨ StoryVerse Omega β¨") as story_weaver_demo: | |
| story_state_output = gr.State(Story()) | |
| gr.Markdown("<div align='center'><h1>β¨ StoryVerse Omega β¨</h1>\n<h3>Craft Immersive Multimodal Worlds with AI</h3></div>") | |
| gr.HTML("<div class='important-note'><strong>Welcome, Worldsmith!</strong> Describe your vision, choose your style, and let Omega help you weave captivating scenes with narrative and imagery. Ensure API keys (<code>STORYVERSE_...</code>) are correctly set in Space Secrets!</div>") | |
| with gr.Accordion("π§ AI Services Status & Info", open=False): | |
| status_text_list = []; text_llm_ok = (GEMINI_TEXT_IS_READY or HF_TEXT_IS_READY); image_gen_ok = (DALLE_IMAGE_IS_READY or HF_IMAGE_IS_READY) | |
| if not text_llm_ok and not image_gen_ok: status_text_list.append("<p style='color:#FCA5A5;font-weight:bold;'>β οΈ CRITICAL: NO AI SERVICES CONFIGURED.</p>") | |
| else: | |
| if text_llm_ok: status_text_list.append("<p style='color:#A7F3D0;'>β Text Generation Ready.</p>") | |
| else: status_text_list.append("<p style='color:#FCD34D;'>β οΈ Text Generation NOT Ready.</p>") | |
| if image_gen_ok: status_text_list.append("<p style='color:#A7F3D0;'>β Image Generation Ready.</p>") | |
| else: status_text_list.append("<p style='color:#FCD34D;'>β οΈ Image Generation NOT Ready.</p>") | |
| gr.HTML("".join(status_text_list)) | |
| with gr.Row(equal_height=False, variant="panel"): | |
| with gr.Column(scale=7, min_width=450): | |
| gr.Markdown("### π‘ **Craft Your Scene**", elem_classes="input-section-header") | |
| with gr.Group(): scene_prompt_input = gr.Textbox(lines=7, label="Scene Vision:", placeholder="e.g., Amidst swirling cosmic dust...") | |
| with gr.Row(elem_classes=["compact-row"]): | |
| with gr.Column(scale=2): image_style_input = gr.Dropdown(choices=["Default (Cinematic Realism)"] + sorted(list(STYLE_PRESETS.keys())), value="Default (Cinematic Realism)", label="Visual Style", allow_custom_value=True) | |
| with gr.Column(scale=2): artist_style_input = gr.Textbox(label="Artistic Inspiration (Optional):", placeholder="e.g., Moebius...") | |
| negative_prompt_input = gr.Textbox(lines=2, label="Exclude from Image:", value=COMMON_NEGATIVE_PROMPTS) | |
| with gr.Accordion("βοΈ Advanced AI Configuration", open=False): | |
| with gr.Group(): | |
| text_model_dropdown = gr.Dropdown(choices=list(TEXT_MODELS.keys()), value=UI_DEFAULT_TEXT_MODEL_KEY, label="Narrative AI Engine") | |
| image_provider_dropdown = gr.Dropdown(choices=list(IMAGE_PROVIDERS.keys()), value=UI_DEFAULT_IMAGE_PROVIDER_KEY, label="Visual AI Engine") | |
| with gr.Row(): | |
| narrative_length_dropdown = gr.Dropdown(["Short (1 paragraph)", "Medium (2-3 paragraphs)", "Detailed (4+ paragraphs)"], value="Medium (2-3 paragraphs)", label="Narrative Detail") | |
| image_quality_dropdown = gr.Dropdown(["Standard", "High Detail", "Sketch Concept"], value="Standard", label="Image Detail/Style") | |
| with gr.Row(elem_classes=["compact-row"], equal_height=True): | |
| engage_button = gr.Button("π Weave Scene!", variant="primary", scale=3, icon="β¨") | |
| surprise_button = gr.Button("π² Surprise!", variant="secondary", scale=1, icon="π") | |
| clear_story_button = gr.Button("ποΈ New", variant="stop", scale=1, icon="β»οΈ") | |
| output_status_bar = gr.HTML(value="<p class='processing_text status_text'>Ready to weave!</p>") | |
| with gr.Column(scale=10, min_width=700): | |
| gr.Markdown("### πΌοΈ **Your StoryVerse**", elem_classes="output-section-header") | |
| with gr.Tabs(): | |
| with gr.TabItem("π Latest Scene"): | |
| output_latest_scene_image = gr.Image(label="Latest Image", type="pil", interactive=False, height=512, show_label=False, show_download_button=True, elem_classes=["panel_image"]) | |
| output_latest_scene_narrative = gr.Markdown() | |
| with gr.TabItem("π Story Scroll"): | |
| output_gallery = gr.Gallery(label="Story Scroll", show_label=False, columns=4, object_fit="cover", height=700, preview=True, allow_preview=True, elem_classes=["gallery_output"]) | |
| with gr.TabItem("βοΈ Log"): | |
| with gr.Accordion("Interaction Log", open=False): | |
| output_interaction_log_markdown = gr.Markdown("Log...") | |
| engage_button.click(fn=disable_buttons_for_processing, outputs=[engage_button, surprise_button], queue=False)\ | |
| .then(fn=add_scene_to_story_orchestrator, | |
| inputs=[story_state_output, scene_prompt_input, image_style_input, artist_style_input, negative_prompt_input, text_model_dropdown, image_provider_dropdown, narrative_length_dropdown, image_quality_dropdown], | |
| outputs=[story_state_output, output_gallery, output_latest_scene_image, output_latest_scene_narrative, output_status_bar, output_interaction_log_markdown])\ | |
| .then(fn=enable_buttons_after_processing, outputs=[engage_button, surprise_button], queue=False) | |
| clear_story_button.click(fn=clear_story_state_ui_wrapper, | |
| outputs=[story_state_output, output_gallery, output_latest_scene_image, output_latest_scene_narrative, output_status_bar, output_interaction_log_markdown, scene_prompt_input]) | |
| surprise_button.click(fn=surprise_me_func, | |
| outputs=[scene_prompt_input, image_style_input, artist_style_input]) | |
| gr.Examples( | |
| examples=[ | |
| ["A lone, weary traveler on a mechanical steed crosses a vast, crimson desert under twin suns. Dust devils dance in the distance.", "Sci-Fi Western", "Moebius", "greenery, water, modern city"], | |
| ["Deep within an ancient, bioluminescent forest, a hidden civilization of sentient fungi perform a mystical ritual around a pulsating crystal.", "Psychedelic Fantasy", "Alex Grey", "technology, buildings, roads"], | |
| ["A child sits on a crescent moon, fishing for stars in a swirling nebula. A friendly space whale swims nearby.", "Whimsical Cosmic", "James Jean", "realistic, dark, scary"], | |
| ["A grand, baroque library where the books fly freely and whisper forgotten lore to those who listen closely.", "Magical Realism", "Remedios Varo", "minimalist, simple, technology"] | |
| ], | |
| inputs=[scene_prompt_input, image_style_input, artist_style_input, negative_prompt_input], | |
| label="π Example Universes to Weave π", | |
| ) | |
| gr.HTML("<div style='text-align:center; margin-top:30px; padding-bottom:20px;'><p style='font-size:0.9em; color:#8080A0;'>β¨ StoryVerse Omegaβ’ - Weaving Worlds with Words and Pixels β¨</p></div>") | |
| # --- Entry Point --- | |
| if __name__ == "__main__": | |
| print("="*80); print("β¨ StoryVerse Omega (DALL-E/Gemini/HF Focus) Launching... β¨") | |
| print(f" Gemini Text Ready: {GEMINI_TEXT_IS_READY}"); print(f" HF Text Ready: {HF_TEXT_IS_READY}") | |
| print(f" DALL-E Image Ready: {DALLE_IMAGE_IS_READY}"); print(f" HF Image API Ready: {HF_IMAGE_IS_READY}") | |
| if not (GEMINI_TEXT_IS_READY or HF_TEXT_IS_READY) or not (DALLE_IMAGE_IS_READY or HF_IMAGE_IS_READY): | |
| print(" π΄ WARNING: Not all primary/fallback AI services configured.") | |
| print(f" Default Text Model: {UI_DEFAULT_TEXT_MODEL_KEY}"); print(f" Default Image Provider: {UI_DEFAULT_IMAGE_PROVIDER_KEY}") | |
| print("="*80) | |
| story_weaver_demo.launch(debug=True, server_name="0.0.0.0", share=False) |