Spaces:
Sleeping
Sleeping
# algoforge_prime/core/llm_clients.py | |
import os | |
import google.generativeai as genai | |
from huggingface_hub import InferenceClient | |
# --- Configuration --- | |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
GEMINI_API_CONFIGURED = False | |
HF_API_CONFIGURED = False | |
hf_inference_client = None | |
google_gemini_models = {} # To store initialized Gemini model instances | |
# --- Initialization --- | |
def initialize_clients(): | |
global GEMINI_API_CONFIGURED, HF_API_CONFIGURED, hf_inference_client, google_gemini_models | |
# Google Gemini | |
if GOOGLE_API_KEY: | |
try: | |
genai.configure(api_key=GOOGLE_API_KEY) | |
GEMINI_API_CONFIGURED = True | |
print("INFO: llm_clients.py - Google Gemini API configured.") | |
except Exception as e: | |
print(f"ERROR: llm_clients.py - Failed to configure Google Gemini API: {e}") | |
else: | |
print("WARNING: llm_clients.py - GOOGLE_API_KEY not found.") | |
# Hugging Face | |
if HF_TOKEN: | |
try: | |
hf_inference_client = InferenceClient(token=HF_TOKEN) | |
HF_API_CONFIGURED = True | |
print("INFO: llm_clients.py - Hugging Face InferenceClient initialized.") | |
except Exception as e: | |
print(f"ERROR: llm_clients.py - Failed to initialize Hugging Face InferenceClient: {e}") | |
else: | |
print("WARNING: llm_clients.py - HF_TOKEN not found.") | |
# Call initialize_clients when the module is imported for the first time. | |
# However, for Gradio apps that might reload, it's often better to call this explicitly from app.py's main scope. | |
# For now, let's assume it's called once. If you see issues, move the call. | |
# initialize_clients() # Or call this from app.py | |
def get_gemini_model_instance(model_id, system_instruction=None): | |
"""Gets or creates a Gemini model instance.""" | |
if not GEMINI_API_CONFIGURED: | |
raise ConnectionError("Google Gemini API not configured.") | |
instance_key = model_id + ("_sys" if system_instruction else "") # Simple keying | |
if instance_key not in google_gemini_models: | |
try: | |
google_gemini_models[instance_key] = genai.GenerativeModel( | |
model_name=model_id, | |
system_instruction=system_instruction | |
) | |
print(f"INFO: Initialized Gemini Model Instance: {instance_key}") | |
except Exception as e: | |
print(f"ERROR: Failed to initialize Gemini model {model_id}: {e}") | |
raise # Re-raise the exception to be caught by the caller | |
return google_gemini_models[instance_key] | |
class LLMResponse: | |
def __init__(self, text=None, error=None, success=True, raw_response=None): | |
self.text = text | |
self.error = error | |
self.success = success | |
self.raw_response = raw_response # Store original API response if needed | |
def __str__(self): | |
if self.success: | |
return self.text if self.text is not None else "" | |
return f"ERROR: {self.error}" | |
def call_huggingface_api(prompt_text, model_id, temperature=0.7, max_new_tokens=350, system_prompt_text=None): | |
if not HF_API_CONFIGURED or not hf_inference_client: | |
return LLMResponse(error="Hugging Face API not configured.", success=False) | |
full_prompt = prompt_text | |
if system_prompt_text: # Simple prepend, specific formatting depends on model | |
full_prompt = f"<s>[INST] <<SYS>>\n{system_prompt_text}\n<</SYS>>\n\n{prompt_text} [/INST]" # Llama-style | |
try: | |
use_sample = temperature > 0.0 | |
raw_response = hf_inference_client.text_generation( | |
full_prompt, model=model_id, max_new_tokens=max_new_tokens, | |
temperature=temperature if use_sample else None, | |
do_sample=use_sample, stream=False | |
) | |
return LLMResponse(text=raw_response, raw_response=raw_response) | |
except Exception as e: | |
error_msg = f"HF API Error ({model_id}): {type(e).__name__} - {e}" | |
print(f"ERROR: llm_clients.py - {error_msg}") | |
return LLMResponse(error=error_msg, success=False, raw_response=e) | |
def call_gemini_api(prompt_text, model_id, temperature=0.7, max_new_tokens=400, system_prompt_text=None): | |
if not GEMINI_API_CONFIGURED: | |
return LLMResponse(error="Google Gemini API not configured.", success=False) | |
try: | |
model_instance = get_gemini_model_instance(model_id, system_instruction=system_prompt_text) | |
generation_config = genai.types.GenerationConfig( | |
temperature=temperature, | |
max_output_tokens=max_new_tokens | |
) | |
raw_response = model_instance.generate_content( | |
prompt_text, # User prompt | |
generation_config=generation_config, | |
stream=False | |
) | |
if raw_response.prompt_feedback and raw_response.prompt_feedback.block_reason: | |
reason = raw_response.prompt_feedback.block_reason_message or raw_response.prompt_feedback.block_reason | |
error_msg = f"Gemini API: Prompt blocked due to safety. Reason: {reason}" | |
print(f"WARNING: llm_clients.py - {error_msg}") | |
return LLMResponse(error=error_msg, success=False, raw_response=raw_response) | |
if not raw_response.candidates or not raw_response.candidates[0].content.parts: | |
finish_reason = raw_response.candidates[0].finish_reason if raw_response.candidates else "Unknown" | |
if str(finish_reason).upper() == "SAFETY": | |
error_msg = f"Gemini API: Response generation stopped by safety filters. Finish Reason: {finish_reason}" | |
else: | |
error_msg = f"Gemini API: Empty response or no content. Finish Reason: {finish_reason}" | |
print(f"WARNING: llm_clients.py - {error_msg}") | |
return LLMResponse(error=error_msg, success=False, raw_response=raw_response) | |
return LLMResponse(text=raw_response.candidates[0].content.parts[0].text, raw_response=raw_response) | |
except Exception as e: | |
error_msg = f"Gemini API Error ({model_id}): {type(e).__name__} - {e}" | |
print(f"ERROR: llm_clients.py - {error_msg}") | |
return LLMResponse(error=error_msg, success=False, raw_response=e) |