Spaces:
Sleeping
Sleeping
Update core/llm_clients.py
Browse files- core/llm_clients.py +97 -86
core/llm_clients.py
CHANGED
|
@@ -5,63 +5,71 @@ from huggingface_hub import InferenceClient
|
|
| 5 |
import time # For potential retries or delays
|
| 6 |
|
| 7 |
# --- Configuration ---
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
|
|
|
|
| 11 |
GEMINI_API_CONFIGURED = False
|
| 12 |
HF_API_CONFIGURED = False
|
| 13 |
|
|
|
|
| 14 |
hf_inference_client = None
|
| 15 |
-
google_gemini_model_instances
|
|
|
|
| 16 |
|
| 17 |
-
# --- Initialization Function (to be called from app.py) ---
|
| 18 |
def initialize_all_clients():
|
| 19 |
-
global GEMINI_API_CONFIGURED, HF_API_CONFIGURED, hf_inference_client
|
| 20 |
|
|
|
|
|
|
|
| 21 |
# Google Gemini
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
try:
|
|
|
|
|
|
|
|
|
|
| 24 |
genai.configure(api_key=GOOGLE_API_KEY)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
GEMINI_API_CONFIGURED = True
|
| 26 |
-
print("
|
| 27 |
except Exception as e:
|
| 28 |
-
GEMINI_API_CONFIGURED = False
|
| 29 |
-
print(f"ERROR: llm_clients.py - Failed to configure Google Gemini API
|
|
|
|
| 30 |
else:
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
# Hugging Face
|
| 34 |
-
|
|
|
|
|
|
|
| 35 |
try:
|
| 36 |
hf_inference_client = InferenceClient(token=HF_TOKEN)
|
|
|
|
|
|
|
| 37 |
HF_API_CONFIGURED = True
|
| 38 |
-
print("
|
| 39 |
except Exception as e:
|
| 40 |
-
HF_API_CONFIGURED = False
|
| 41 |
-
print(f"ERROR: llm_clients.py - Failed to initialize Hugging Face InferenceClient
|
|
|
|
|
|
|
| 42 |
else:
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
""
|
| 47 |
-
|
| 48 |
-
Gemini's genai.GenerativeModel is fairly lightweight to create,
|
| 49 |
-
but caching can avoid repeated setup if system_instruction is complex or model loading is slow.
|
| 50 |
-
For now, creating a new one each time is fine unless performance becomes an issue.
|
| 51 |
-
"""
|
| 52 |
-
if not GEMINI_API_CONFIGURED:
|
| 53 |
-
raise ConnectionError("Google Gemini API not configured or configuration failed.")
|
| 54 |
-
try:
|
| 55 |
-
# For gemini-1.5 models, system_instruction is preferred.
|
| 56 |
-
# For older gemini-1.0, system instructions might need to be part of the 'contents'.
|
| 57 |
-
return genai.GenerativeModel(
|
| 58 |
-
model_name=model_id,
|
| 59 |
-
system_instruction=system_instruction
|
| 60 |
-
)
|
| 61 |
-
except Exception as e:
|
| 62 |
-
print(f"ERROR: llm_clients.py - Failed to get Gemini model instance for {model_id}: {e}")
|
| 63 |
-
raise
|
| 64 |
|
|
|
|
| 65 |
class LLMResponse:
|
| 66 |
def __init__(self, text=None, error=None, success=True, raw_response=None, model_id_used="unknown"):
|
| 67 |
self.text = text
|
|
@@ -72,55 +80,68 @@ class LLMResponse:
|
|
| 72 |
|
| 73 |
def __str__(self):
|
| 74 |
if self.success:
|
| 75 |
-
return self.text if self.text is not None else ""
|
| 76 |
return f"ERROR (Model: {self.model_id_used}): {self.error}"
|
| 77 |
|
|
|
|
| 78 |
def call_huggingface_api(prompt_text, model_id, temperature=0.7, max_new_tokens=512, system_prompt_text=None):
|
|
|
|
| 79 |
if not HF_API_CONFIGURED or not hf_inference_client:
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
|
| 82 |
full_prompt = prompt_text
|
| 83 |
-
# Llama-style system prompt formatting; adjust if using other HF model families
|
| 84 |
if system_prompt_text:
|
| 85 |
-
full_prompt = f"<s>[INST] <<SYS>>\n{system_prompt_text}\n<</SYS>>\n\n{prompt_text} [/INST]"
|
| 86 |
|
| 87 |
try:
|
| 88 |
-
|
|
|
|
| 89 |
raw_response = hf_inference_client.text_generation(
|
| 90 |
full_prompt, model=model_id, max_new_tokens=max_new_tokens,
|
| 91 |
-
temperature=temperature if use_sample else None,
|
| 92 |
do_sample=use_sample,
|
| 93 |
-
# top_p=0.9 if use_sample else None, # Optional
|
| 94 |
stream=False
|
| 95 |
)
|
|
|
|
| 96 |
return LLMResponse(text=raw_response, raw_response=raw_response, model_id_used=model_id)
|
| 97 |
except Exception as e:
|
| 98 |
-
error_msg = f"HF API Error ({model_id}): {type(e).__name__} - {str(e)}"
|
| 99 |
print(f"ERROR: llm_clients.py - {error_msg}")
|
| 100 |
return LLMResponse(error=error_msg, success=False, raw_response=e, model_id_used=model_id)
|
| 101 |
|
| 102 |
def call_gemini_api(prompt_text, model_id, temperature=0.7, max_new_tokens=768, system_prompt_text=None):
|
|
|
|
| 103 |
if not GEMINI_API_CONFIGURED:
|
| 104 |
-
|
|
|
|
|
|
|
| 105 |
|
| 106 |
try:
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
generation_config = genai.types.GenerationConfig(
|
| 110 |
temperature=temperature,
|
| 111 |
max_output_tokens=max_new_tokens
|
| 112 |
-
# top_p=0.9 # Optional
|
| 113 |
)
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
| 115 |
raw_response = model_instance.generate_content(
|
| 116 |
-
prompt_text, # User prompt
|
| 117 |
generation_config=generation_config,
|
| 118 |
stream=False
|
| 119 |
-
# safety_settings=[ # Optional: Adjust safety settings if needed, be very careful
|
| 120 |
-
# {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
| 121 |
-
# {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
| 122 |
-
# ]
|
| 123 |
)
|
|
|
|
|
|
|
| 124 |
|
| 125 |
if raw_response.prompt_feedback and raw_response.prompt_feedback.block_reason:
|
| 126 |
reason = raw_response.prompt_feedback.block_reason_message or raw_response.prompt_feedback.block_reason
|
|
@@ -128,56 +149,46 @@ def call_gemini_api(prompt_text, model_id, temperature=0.7, max_new_tokens=768,
|
|
| 128 |
print(f"WARNING: llm_clients.py - {error_msg}")
|
| 129 |
return LLMResponse(error=error_msg, success=False, raw_response=raw_response, model_id_used=model_id)
|
| 130 |
|
| 131 |
-
if not raw_response.candidates:
|
| 132 |
-
error_msg = "Gemini API: No candidates returned in response.
|
| 133 |
-
|
| 134 |
-
if raw_response.prompt_feedback and raw_response.prompt_feedback.block_reason:
|
| 135 |
-
reason = raw_response.prompt_feedback.block_reason_message or raw_response.prompt_feedback.block_reason
|
| 136 |
-
error_msg = f"Gemini API: Your prompt was blocked (no candidates). Reason: {reason}. Try rephrasing."
|
| 137 |
print(f"WARNING: llm_clients.py - {error_msg}")
|
| 138 |
return LLMResponse(error=error_msg, success=False, raw_response=raw_response, model_id_used=model_id)
|
| 139 |
|
| 140 |
-
|
| 141 |
-
# Check the first candidate
|
| 142 |
candidate = raw_response.candidates[0]
|
| 143 |
if not candidate.content or not candidate.content.parts:
|
| 144 |
-
finish_reason = str(candidate.finish_reason).upper()
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
elif finish_reason == "RECITATION":
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
error_msg = f"Gemini API: Response generation stopped due to max tokens. Consider increasing max_new_tokens. Finish Reason: {finish_reason}."
|
| 151 |
-
# In this case, there might still be partial text.
|
| 152 |
-
# For simplicity, we'll treat it as an incomplete generation here.
|
| 153 |
-
# You could choose to return partial text if desired.
|
| 154 |
-
# return LLMResponse(text="[PARTIAL RESPONSE - MAX TOKENS REACHED]", ..., model_id_used=model_id)
|
| 155 |
-
else:
|
| 156 |
-
error_msg = f"Gemini API: Empty response or no content parts. Finish Reason: {finish_reason}."
|
| 157 |
print(f"WARNING: llm_clients.py - {error_msg}")
|
| 158 |
-
#
|
| 159 |
-
# This part might need refinement based on how you want to handle partial/stopped responses
|
| 160 |
partial_text = ""
|
| 161 |
-
if candidate.content and candidate.content.parts and candidate.content.parts[0]
|
| 162 |
partial_text = candidate.content.parts[0].text
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
| 166 |
return LLMResponse(error=error_msg, success=False, raw_response=raw_response, model_id_used=model_id)
|
| 167 |
|
| 168 |
-
|
|
|
|
|
|
|
| 169 |
|
| 170 |
except Exception as e:
|
| 171 |
-
error_msg = f"Gemini API Call
|
| 172 |
-
#
|
| 173 |
if "API key not valid" in str(e) or "PERMISSION_DENIED" in str(e):
|
| 174 |
-
error_msg = f"Gemini API Error ({model_id}): API key invalid or permission denied. Check GOOGLE_API_KEY and ensure Gemini API is enabled. Original: {str(e)}"
|
| 175 |
-
elif "Could not find model" in str(e) or "ील नहीं मिला" in str(e):
|
| 176 |
error_msg = f"Gemini API Error ({model_id}): Model ID '{model_id}' not found or inaccessible with your key. Original: {str(e)}"
|
| 177 |
elif "User location is not supported" in str(e):
|
| 178 |
error_msg = f"Gemini API Error ({model_id}): User location not supported for this model/API. Original: {str(e)}"
|
| 179 |
-
elif "Quota exceeded" in str(e):
|
| 180 |
error_msg = f"Gemini API Error ({model_id}): API quota exceeded. Please check your Google Cloud quotas. Original: {str(e)}"
|
| 181 |
-
|
| 182 |
print(f"ERROR: llm_clients.py - {error_msg}")
|
| 183 |
return LLMResponse(error=error_msg, success=False, raw_response=e, model_id_used=model_id)
|
|
|
|
| 5 |
import time # For potential retries or delays
|
| 6 |
|
| 7 |
# --- Configuration ---
|
| 8 |
+
# These will be populated by os.getenv()
|
| 9 |
+
GOOGLE_API_KEY = None
|
| 10 |
+
HF_TOKEN = None
|
| 11 |
|
| 12 |
+
# Status flags, default to False
|
| 13 |
GEMINI_API_CONFIGURED = False
|
| 14 |
HF_API_CONFIGURED = False
|
| 15 |
|
| 16 |
+
# Client instances
|
| 17 |
hf_inference_client = None
|
| 18 |
+
# google_gemini_model_instances cache is not strictly necessary as genai.GenerativeModel is light.
|
| 19 |
+
# Removing it for now to simplify, can be added back if model instantiation proves slow.
|
| 20 |
|
| 21 |
+
# --- Initialization Function (to be called from app.py's global scope) ---
|
| 22 |
def initialize_all_clients():
|
| 23 |
+
global GOOGLE_API_KEY, HF_TOKEN, GEMINI_API_CONFIGURED, HF_API_CONFIGURED, hf_inference_client
|
| 24 |
|
| 25 |
+
print("INFO: llm_clients.py - Attempting to initialize all API clients...")
|
| 26 |
+
|
| 27 |
# Google Gemini
|
| 28 |
+
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
| 29 |
+
if GOOGLE_API_KEY and GOOGLE_API_KEY.strip(): # Check if key is not None and not just whitespace
|
| 30 |
+
print("INFO: llm_clients.py - GOOGLE_API_KEY found in environment.")
|
| 31 |
try:
|
| 32 |
+
# Test configuration by making a very simple, non-resource-intensive call
|
| 33 |
+
# or by listing models if supported and cheap.
|
| 34 |
+
# For now, genai.configure() is the main check.
|
| 35 |
genai.configure(api_key=GOOGLE_API_KEY)
|
| 36 |
+
# Optionally, try to list models or a similar lightweight check if genai.configure isn't enough
|
| 37 |
+
# models = [m for m in genai.list_models() if 'generateContent' in m.supported_generation_methods]
|
| 38 |
+
# if not models:
|
| 39 |
+
# raise Exception("No usable Gemini models found with this API key, or API not fully enabled.")
|
| 40 |
GEMINI_API_CONFIGURED = True
|
| 41 |
+
print("SUCCESS: llm_clients.py - Google Gemini API configured successfully.")
|
| 42 |
except Exception as e:
|
| 43 |
+
GEMINI_API_CONFIGURED = False
|
| 44 |
+
print(f"ERROR: llm_clients.py - Failed to configure/validate Google Gemini API. Key value might be invalid, API not enabled in Google Cloud, or other issue.")
|
| 45 |
+
print(f" Gemini Init Error Details: {type(e).__name__}: {e}")
|
| 46 |
else:
|
| 47 |
+
GEMINI_API_CONFIGURED = False # Explicitly set if key is missing/empty
|
| 48 |
+
print("WARNING: llm_clients.py - GOOGLE_API_KEY not found or is empty in environment variables.")
|
| 49 |
|
| 50 |
# Hugging Face
|
| 51 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 52 |
+
if HF_TOKEN and HF_TOKEN.strip(): # Check if token is not None and not just whitespace
|
| 53 |
+
print("INFO: llm_clients.py - HF_TOKEN found in environment.")
|
| 54 |
try:
|
| 55 |
hf_inference_client = InferenceClient(token=HF_TOKEN)
|
| 56 |
+
# Optionally, you could try a very quick ping to a known small public model if client init isn't enough
|
| 57 |
+
# hf_inference_client.text_generation("ping", model="gpt2", max_new_tokens=1)
|
| 58 |
HF_API_CONFIGURED = True
|
| 59 |
+
print("SUCCESS: llm_clients.py - Hugging Face InferenceClient initialized successfully.")
|
| 60 |
except Exception as e:
|
| 61 |
+
HF_API_CONFIGURED = False
|
| 62 |
+
print(f"ERROR: llm_clients.py - Failed to initialize Hugging Face InferenceClient. Token might be invalid or other issue.")
|
| 63 |
+
print(f" HF Init Error Details: {type(e).__name__}: {e}")
|
| 64 |
+
hf_inference_client = None # Ensure client is None on failure
|
| 65 |
else:
|
| 66 |
+
HF_API_CONFIGURED = False # Explicitly set if token is missing/empty
|
| 67 |
+
print("WARNING: llm_clients.py - HF_TOKEN not found or is empty in environment variables.")
|
| 68 |
+
|
| 69 |
+
print(f"INFO: llm_clients.py - Initialization complete. Gemini Configured: {GEMINI_API_CONFIGURED}, HF Configured: {HF_API_CONFIGURED}")
|
| 70 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
# This class remains useful for standardizing responses
|
| 73 |
class LLMResponse:
|
| 74 |
def __init__(self, text=None, error=None, success=True, raw_response=None, model_id_used="unknown"):
|
| 75 |
self.text = text
|
|
|
|
| 80 |
|
| 81 |
def __str__(self):
|
| 82 |
if self.success:
|
| 83 |
+
return str(self.text) if self.text is not None else "" # Ensure text is string
|
| 84 |
return f"ERROR (Model: {self.model_id_used}): {self.error}"
|
| 85 |
|
| 86 |
+
|
| 87 |
def call_huggingface_api(prompt_text, model_id, temperature=0.7, max_new_tokens=512, system_prompt_text=None):
|
| 88 |
+
print(f"DEBUG: llm_clients.py - call_huggingface_api attempt for model: {model_id}")
|
| 89 |
if not HF_API_CONFIGURED or not hf_inference_client:
|
| 90 |
+
error_msg = "Hugging Face API not configured (HF_TOKEN missing, client init failed, or token invalid)."
|
| 91 |
+
print(f"ERROR: llm_clients.py - {error_msg}")
|
| 92 |
+
return LLMResponse(error=error_msg, success=False, model_id_used=model_id)
|
| 93 |
|
| 94 |
full_prompt = prompt_text
|
|
|
|
| 95 |
if system_prompt_text:
|
| 96 |
+
full_prompt = f"<s>[INST] <<SYS>>\n{system_prompt_text}\n<</SYS>>\n\n{prompt_text} [/INST]" # Llama-style
|
| 97 |
|
| 98 |
try:
|
| 99 |
+
print(f" HF API Call - Prompt (first 100 chars): {full_prompt[:100]}...")
|
| 100 |
+
use_sample = temperature > 0.001
|
| 101 |
raw_response = hf_inference_client.text_generation(
|
| 102 |
full_prompt, model=model_id, max_new_tokens=max_new_tokens,
|
| 103 |
+
temperature=temperature if use_sample else None,
|
| 104 |
do_sample=use_sample,
|
|
|
|
| 105 |
stream=False
|
| 106 |
)
|
| 107 |
+
print(f" HF API Call - Success for model: {model_id}. Response (first 100 chars): {str(raw_response)[:100]}...")
|
| 108 |
return LLMResponse(text=raw_response, raw_response=raw_response, model_id_used=model_id)
|
| 109 |
except Exception as e:
|
| 110 |
+
error_msg = f"HF API Error during text_generation ({model_id}): {type(e).__name__} - {str(e)}"
|
| 111 |
print(f"ERROR: llm_clients.py - {error_msg}")
|
| 112 |
return LLMResponse(error=error_msg, success=False, raw_response=e, model_id_used=model_id)
|
| 113 |
|
| 114 |
def call_gemini_api(prompt_text, model_id, temperature=0.7, max_new_tokens=768, system_prompt_text=None):
|
| 115 |
+
print(f"DEBUG: llm_clients.py - call_gemini_api attempt for model: {model_id}")
|
| 116 |
if not GEMINI_API_CONFIGURED:
|
| 117 |
+
error_msg = "Google Gemini API not configured (GOOGLE_API_KEY missing, config failed, or key invalid)."
|
| 118 |
+
print(f"ERROR: llm_clients.py - {error_msg}")
|
| 119 |
+
return LLMResponse(error=error_msg, success=False, model_id_used=model_id)
|
| 120 |
|
| 121 |
try:
|
| 122 |
+
# genai.GenerativeModel is the recommended way to get a model instance.
|
| 123 |
+
# system_instruction is preferred for newer models (like 1.5 series).
|
| 124 |
+
print(f" Gemini API Call - Getting model instance for: {model_id}")
|
| 125 |
+
model_instance = genai.GenerativeModel(
|
| 126 |
+
model_name=model_id,
|
| 127 |
+
system_instruction=system_prompt_text # Pass system prompt here
|
| 128 |
+
)
|
| 129 |
|
| 130 |
generation_config = genai.types.GenerationConfig(
|
| 131 |
temperature=temperature,
|
| 132 |
max_output_tokens=max_new_tokens
|
|
|
|
| 133 |
)
|
| 134 |
+
|
| 135 |
+
print(f" Gemini API Call - Prompt (first 100 chars): {prompt_text[:100]}...")
|
| 136 |
+
if system_prompt_text: print(f" Gemini API Call - System Prompt (first 100 chars): {system_prompt_text[:100]}...")
|
| 137 |
+
|
| 138 |
raw_response = model_instance.generate_content(
|
| 139 |
+
prompt_text, # User prompt directly if system_instruction is used
|
| 140 |
generation_config=generation_config,
|
| 141 |
stream=False
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
)
|
| 143 |
+
print(f" Gemini API Call - Raw response received for model: {model_id}. Prompt feedback: {raw_response.prompt_feedback}, Candidates: {'Yes' if raw_response.candidates else 'No'}")
|
| 144 |
+
|
| 145 |
|
| 146 |
if raw_response.prompt_feedback and raw_response.prompt_feedback.block_reason:
|
| 147 |
reason = raw_response.prompt_feedback.block_reason_message or raw_response.prompt_feedback.block_reason
|
|
|
|
| 149 |
print(f"WARNING: llm_clients.py - {error_msg}")
|
| 150 |
return LLMResponse(error=error_msg, success=False, raw_response=raw_response, model_id_used=model_id)
|
| 151 |
|
| 152 |
+
if not raw_response.candidates:
|
| 153 |
+
error_msg = "Gemini API: No candidates returned in response. This often indicates the prompt was blocked or an internal error occurred before generation."
|
| 154 |
+
if raw_response.prompt_feedback: error_msg += f" Prompt Feedback: {raw_response.prompt_feedback}"
|
|
|
|
|
|
|
|
|
|
| 155 |
print(f"WARNING: llm_clients.py - {error_msg}")
|
| 156 |
return LLMResponse(error=error_msg, success=False, raw_response=raw_response, model_id_used=model_id)
|
| 157 |
|
|
|
|
|
|
|
| 158 |
candidate = raw_response.candidates[0]
|
| 159 |
if not candidate.content or not candidate.content.parts:
|
| 160 |
+
finish_reason = str(candidate.finish_reason if candidate.finish_reason else "UNKNOWN").upper()
|
| 161 |
+
error_msg = f"Gemini API: Response generation stopped or yielded no content parts. Finish Reason: {finish_reason}."
|
| 162 |
+
if finish_reason == "SAFETY": error_msg += " Likely due to safety filters."
|
| 163 |
+
elif finish_reason == "RECITATION": error_msg += " Likely due to recitation policy."
|
| 164 |
+
elif finish_reason == "MAX_TOKENS": error_msg += " Consider increasing max_new_tokens if content seems truncated."
|
| 165 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
print(f"WARNING: llm_clients.py - {error_msg}")
|
| 167 |
+
# Attempt to extract partial text if MAX_TOKENS or other non-error finish reasons
|
|
|
|
| 168 |
partial_text = ""
|
| 169 |
+
if candidate.content and candidate.content.parts and hasattr(candidate.content.parts[0], 'text'):
|
| 170 |
partial_text = candidate.content.parts[0].text
|
| 171 |
+
|
| 172 |
+
if partial_text and finish_reason != "SAFETY" and finish_reason != "RECITATION" and finish_reason != "OTHER": # Only return partial if not a hard block
|
| 173 |
+
return LLMResponse(text=partial_text + f"\n[Note: Generation ended due to {finish_reason}]", raw_response=raw_response, model_id_used=model_id)
|
| 174 |
+
else: # If safety/recitation or truly no text, return as error
|
| 175 |
return LLMResponse(error=error_msg, success=False, raw_response=raw_response, model_id_used=model_id)
|
| 176 |
|
| 177 |
+
response_text = candidate.content.parts[0].text
|
| 178 |
+
print(f" Gemini API Call - Success for model: {model_id}. Response text (first 100 chars): {response_text[:100]}...")
|
| 179 |
+
return LLMResponse(text=response_text, raw_response=raw_response, model_id_used=model_id)
|
| 180 |
|
| 181 |
except Exception as e:
|
| 182 |
+
error_msg = f"Gemini API Call Exception ({model_id}): {type(e).__name__} - {str(e)}"
|
| 183 |
+
# Specific error parsing from previous version is good, let's keep it.
|
| 184 |
if "API key not valid" in str(e) or "PERMISSION_DENIED" in str(e):
|
| 185 |
+
error_msg = f"Gemini API Error ({model_id}): API key invalid or permission denied. Check GOOGLE_API_KEY and ensure Gemini API is enabled in Google Cloud. Original: {str(e)}"
|
| 186 |
+
elif "Could not find model" in str(e) or "ील नहीं मिला" in str(e):
|
| 187 |
error_msg = f"Gemini API Error ({model_id}): Model ID '{model_id}' not found or inaccessible with your key. Original: {str(e)}"
|
| 188 |
elif "User location is not supported" in str(e):
|
| 189 |
error_msg = f"Gemini API Error ({model_id}): User location not supported for this model/API. Original: {str(e)}"
|
| 190 |
+
elif "Quota exceeded" in str(e): # Check for "Quota" in the error message from Google
|
| 191 |
error_msg = f"Gemini API Error ({model_id}): API quota exceeded. Please check your Google Cloud quotas. Original: {str(e)}"
|
| 192 |
+
|
| 193 |
print(f"ERROR: llm_clients.py - {error_msg}")
|
| 194 |
return LLMResponse(error=error_msg, success=False, raw_response=e, model_id_used=model_id)
|