File size: 9,631 Bytes
f1cd1c6
86911ce
 
 
e22139a
86911ce
e22139a
86911ce
 
 
e22139a
 
 
 
a1dbeb2
e22139a
 
 
 
 
 
 
 
 
 
 
 
5fb0df4
 
e22139a
 
 
 
 
 
 
 
5fb0df4
 
 
e22139a
5fb0df4
e22139a
 
 
 
 
5fb0df4
 
e22139a
 
5fb0df4
 
e22139a
5fb0df4
e22139a
5fb0df4
 
 
 
e22139a
 
5fb0df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e22139a
5fb0df4
 
 
 
 
 
 
 
 
 
 
e22139a
5fb0df4
 
 
 
 
 
 
 
 
 
 
e22139a
 
5fb0df4
 
 
 
 
 
e22139a
5fb0df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e22139a
5fb0df4
 
 
e22139a
5fb0df4
 
 
 
 
 
e22139a
5fb0df4
 
 
 
 
 
 
 
 
 
e22139a
5fb0df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e22139a
 
5fb0df4
 
 
 
 
 
 
e22139a
5fb0df4
e22139a
a1dbeb2
5fb0df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e22139a
5fb0df4
 
 
 
e22139a
5fb0df4
e22139a
5fb0df4
 
 
e7e593a
5fb0df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import re
import json
import logging
import traceback
from functools import lru_cache
from typing import List, Dict, Any, Optional, TypedDict

import requests
from langchain_groq import ChatGroq
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import tool
from langgraph.prebuilt import ToolExecutor
from langgraph.graph import StateGraph, END

# ── Logging Configuration ──────────────────────────────────────────────
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

# ── Environment Variables ──────────────────────────────────────────────
UMLS_API_KEY   = os.getenv("UMLS_API_KEY")
GROQ_API_KEY   = os.getenv("GROQ_API_KEY")
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")

if not all([UMLS_API_KEY, GROQ_API_KEY, TAVILY_API_KEY]):
    logger.error("Missing required API keys")
    raise RuntimeError("Missing API keys")

# ── Agent Configuration ──────────────────────────────────────────────
class ClinicalPrompts:
    SYSTEM_PROMPT = """
    You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation...
    [SYSTEM PROMPT CONTENT HERE]
    """

MAX_ITERATIONS = 4
AGENT_MODEL_NAME = "llama3-70b-8192"
AGENT_TEMPERATURE = 0.1

# ── State Definition ─────────────────────────────────────────────────
class AgentState(TypedDict):
    messages: List[Any]
    patient_data: Optional[Dict[str, Any]]
    summary: Optional[str]
    interaction_warnings: Optional[List[str]]
    done: bool
    iterations: int

def propagate_state(new: Dict[str, Any], old: Dict[str, Any]) -> Dict[str, Any]:
    """Merge new state changes with existing state"""
    return {**old, **new}

# ── Core Agent Node ──────────────────────────────────────────────────
def agent_node(state: AgentState) -> Dict[str, Any]:
    """Main agent node with iteration tracking"""
    state = dict(state)  # Create mutable copy
    
    # Check termination conditions
    if state.get("done", False):
        return state
    
    # Update iteration count
    iterations = state.get("iterations", 0) + 1
    state["iterations"] = iterations
    
    # Enforce iteration limit
    if iterations >= MAX_ITERATIONS:
        return {
            "messages": [AIMessage(content="Consultation concluded. Maximum iterations reached.")],
            "done": True,
            **state
        }
    
    # Prepare message history
    messages = state.get("messages", [])
    if not messages or not isinstance(messages[0], SystemMessage):
        messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + messages
    
    try:
        # Generate response
        llm_response = ChatGroq(
            temperature=AGENT_TEMPERATURE,
            model=AGENT_MODEL_NAME
        ).invoke(messages)
        
        return propagate_state({
            "messages": [llm_response],
            "done": "consultation complete" in llm_response.content.lower()
        }, state)
    
    except Exception as e:
        logger.error(f"Agent error: {str(e)}")
        return propagate_state({
            "messages": [AIMessage(content=f"System Error: {str(e)}")],
            "done": True
        }, state)

# ── Tool Handling Nodes ──────────────────────────────────────────────
tool_executor = ToolExecutor([
    TavilySearchResults(max_results=3),
    # Include other tools here...
])

def tool_node(state: AgentState) -> Dict[str, Any]:
    """Execute tool calls from last agent message"""
    state = dict(state)
    messages = state["messages"]
    last_message = messages[-1]
    
    if not isinstance(last_message, AIMessage) or not last_message.tool_calls:
        return state
    
    tool_calls = last_message.tool_calls
    outputs = []
    
    for tool_call in tool_calls:
        try:
            output = tool_executor.invoke(tool_call)
            outputs.append(
                ToolMessage(
                    content=json.dumps(output),
                    tool_call_id=tool_call["id"],
                    name=tool_call["name"]
                )
            )
        except Exception as e:
            logger.error(f"Tool error: {str(e)}")
            outputs.append(
                ToolMessage(
                    content=json.dumps({"error": str(e)}),
                    tool_call_id=tool_call["id"],
                    name=tool_call["name"]
                )
            )
    
    return propagate_state({
        "messages": outputs,
        "interaction_warnings": detect_interaction_warnings(outputs)
    }, state)

def detect_interaction_warnings(tool_messages: List[ToolMessage]) -> List[str]:
    """Parse tool outputs for interaction warnings"""
    warnings = []
    for msg in tool_messages:
        try:
            content = json.loads(msg.content)
            if content.get("status") == "warning":
                warnings.extend(content.get("warnings", []))
        except json.JSONDecodeError:
            continue
    return warnings

# ── Safety Reflection Node ───────────────────────────────────────────
def reflection_node(state: AgentState) -> Dict[str, Any]:
    """Analyze potential safety issues"""
    warnings = state.get("interaction_warnings", [])
    if not warnings:
        return state
    
    prompt = f"""Analyze these clinical warnings:
    {chr(10).join(warnings)}
    
    Provide concise safety recommendations:"""
    
    try:
        reflection = ChatGroq(
            temperature=0.0,  # Strict safety mode
            model=AGENT_MODEL_NAME
        ).invoke([HumanMessage(content=prompt)])
        
        return propagate_state({
            "messages": [reflection],
            "summary": f"Safety Review:\n{reflection.content}"
        }, state)
    
    except Exception as e:
        logger.error(f"Reflection error: {str(e)}")
        return propagate_state({
            "messages": [AIMessage(content=f"Safety review unavailable: {str(e)}")],
            "summary": "Failed safety review"
        }, state)

# ── State Routing Logic ──────────────────────────────────────────────
def route_state(state: AgentState) -> str:
    """Determine next node in workflow"""
    if state.get("done", False):
        return "end"
    
    messages = state.get("messages", [])
    
    # Prioritize safety reflection
    if state.get("interaction_warnings"):
        return "reflection"
    
    # Check for tool calls
    if messages and isinstance(messages[-1], AIMessage):
        if messages[-1].tool_calls:
            return "tools"
    
    return "agent"

# ── Workflow Construction ────────────────────────────────────────────
class ClinicalAgent:
    def __init__(self):
        self.workflow = StateGraph(AgentState)
        
        # Define nodes
        self.workflow.add_node("agent", agent_node)
        self.workflow.add_node("tools", tool_node)
        self.workflow.add_node("reflection", reflection_node)
        
        # Configure edges
        self.workflow.set_entry_point("agent")
        
        self.workflow.add_conditional_edges(
            "agent",
            lambda state: "tools" if state.get("messages")[-1].tool_calls else "end",
            {"tools": "tools", "end": END}
        )
        
        self.workflow.add_conditional_edges(
            "tools",
            lambda state: "reflection" if state.get("interaction_warnings") else "agent",
            {"reflection": "reflection", "agent": "agent"}
        )
        
        self.workflow.add_edge("reflection", "agent")
        
        self.app = self.workflow.compile()
    
    def consult(self, initial_state: Dict) -> Dict:
        """Execute full consultation workflow"""
        try:
            return self.app.invoke(
                initial_state,
                {"recursion_limit": MAX_ITERATIONS + 2}
            )
        except Exception as e:
            logger.error(f"Consultation failed: {str(e)}")
            return {
                "error": str(e),
                "trace": traceback.format_exc(),
                "done": True
            }

# ── Example Usage ────────────────────────────────────────────────────
if __name__ == "__main__":
    agent = ClinicalAgent()
    
    initial_state = {
        "messages": [HumanMessage(content="Patient presents with chest pain")],
        "patient_data": {
            "age": 45,
            "vitals": {"bp": "150/95", "hr": 110}
        },
        "done": False,
        "iterations": 0
    }
    
    result = agent.consult(initial_state)
    print("Final State:", json.dumps(result, indent=2))