Update app.py
Browse files
app.py
CHANGED
|
@@ -1,121 +1,561 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from langchain_groq import ChatGroq
|
| 3 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 4 |
-
from langchain_core.messages import HumanMessage, SystemMessage
|
|
|
|
|
|
|
|
|
|
| 5 |
from langchain_core.tools import tool
|
| 6 |
-
from typing import Optional
|
| 7 |
import json
|
|
|
|
| 8 |
|
| 9 |
-
# Configuration
|
| 10 |
-
class
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
def __init__(self):
|
| 40 |
-
self.model = ChatGroq(
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
try:
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
except Exception as e:
|
| 51 |
-
st.error(f"Error
|
| 52 |
-
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
def process_action(self, action: dict) -> str:
|
| 55 |
try:
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
if tool_name == "order_lab_test":
|
| 60 |
-
return order_lab_test.invoke(args)
|
| 61 |
-
elif tool_name == "prescribe_medication":
|
| 62 |
-
return prescribe_medication.invoke(args)
|
| 63 |
-
else:
|
| 64 |
-
return f"Unknown action: {tool_name}"
|
| 65 |
except Exception as e:
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
-
# Streamlit UI
|
| 69 |
def main():
|
| 70 |
-
st.set_page_config(page_title=
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
| 73 |
if 'agent' not in st.session_state:
|
| 74 |
-
st.session_state.agent =
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
with st.sidebar:
|
| 78 |
-
st.header("Patient Intake")
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
patient_data = {
|
| 86 |
-
"
|
| 87 |
-
"
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
"vitals": {
|
| 92 |
-
"
|
| 93 |
-
"
|
| 94 |
-
}
|
|
|
|
| 95 |
}
|
| 96 |
-
|
| 97 |
-
# Main
|
| 98 |
-
st.
|
| 99 |
-
|
| 100 |
-
#
|
| 101 |
-
if st.button("
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
if __name__ == "__main__":
|
| 121 |
main()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from langchain_groq import ChatGroq
|
| 3 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 4 |
+
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
|
| 5 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 6 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 7 |
+
from langchain_core.pydantic_v1 import BaseModel, Field
|
| 8 |
from langchain_core.tools import tool
|
| 9 |
+
from typing import Optional, List, Dict, Any
|
| 10 |
import json
|
| 11 |
+
import re # For parsing vitals like BP
|
| 12 |
|
| 13 |
+
# --- Configuration & Constants ---
|
| 14 |
+
class ClinicalAppSettings:
|
| 15 |
+
APP_TITLE = "SynapseAI: Advanced Clinical Decision Support"
|
| 16 |
+
PAGE_LAYOUT = "wide"
|
| 17 |
+
MODEL_NAME = "llama3-70b-8192" # Use a powerful model like Groq's Llama3 70b
|
| 18 |
+
TEMPERATURE = 0.1
|
| 19 |
+
MAX_SEARCH_RESULTS = 3
|
| 20 |
+
|
| 21 |
+
class ClinicalPrompts:
|
| 22 |
+
SYSTEM_PROMPT = """
|
| 23 |
+
You are SynapseAI, an expert AI clinical assistant designed to support healthcare professionals.
|
| 24 |
+
Your primary function is to analyze patient data, provide differential diagnoses, suggest evidence-based management plans, and identify potential risks according to the latest medical guidelines and safety protocols.
|
| 25 |
+
|
| 26 |
+
**Core Directives:**
|
| 27 |
+
1. **Comprehensive Analysis:** Thoroughly analyze ALL provided patient data (demographics, HPI, PMH, PSH, Allergies, Meds, SH, FH, ROS, Vitals, Exam).
|
| 28 |
+
2. **Structured Output:** ALWAYS format your response using the following JSON structure:
|
| 29 |
+
```json
|
| 30 |
+
{
|
| 31 |
+
"assessment": "Concise summary of the patient's presentation and key findings.",
|
| 32 |
+
"differential_diagnosis": [
|
| 33 |
+
{"diagnosis": "Primary Diagnosis", "likelihood": "High/Medium/Low", "rationale": "Supporting evidence..."},
|
| 34 |
+
{"diagnosis": "Alternative Diagnosis 1", "likelihood": "Medium/Low", "rationale": "Supporting/Refuting evidence..."},
|
| 35 |
+
{"diagnosis": "Alternative Diagnosis 2", "likelihood": "Low", "rationale": "Why it's less likely but considered..."}
|
| 36 |
+
],
|
| 37 |
+
"risk_assessment": {
|
| 38 |
+
"identified_red_flags": ["List any triggered red flags based on input"],
|
| 39 |
+
"immediate_concerns": ["Specific urgent issues requiring attention (e.g., sepsis risk, ACS rule-out)"],
|
| 40 |
+
"potential_complications": ["Possible future issues based on presentation"]
|
| 41 |
+
},
|
| 42 |
+
"recommended_plan": {
|
| 43 |
+
"investigations": ["List specific lab tests or imaging required. Use 'order_lab_test' tool."],
|
| 44 |
+
"therapeutics": ["Suggest specific treatments or prescriptions. Use 'prescribe_medication' tool."],
|
| 45 |
+
"consultations": ["Recommend specialist consultations if needed."],
|
| 46 |
+
"patient_education": ["Key points for patient communication."]
|
| 47 |
+
},
|
| 48 |
+
"rationale_summary": "Brief justification for the overall assessment and plan, referencing guidelines or evidence where possible. Use 'tavily_search_results' tool if needed to find supporting evidence/guidelines.",
|
| 49 |
+
"interaction_check_summary": "Summary of findings from the 'check_drug_interactions' tool IF a new medication was considered or prescribed."
|
| 50 |
+
}
|
| 51 |
+
```
|
| 52 |
+
3. **Safety First - Red Flags:** Immediately identify and report any conditions matching the defined RED_FLAGS. Use the `flag_risk` tool if critical.
|
| 53 |
+
4. **Safety First - Drug Interactions:** BEFORE suggesting *any* new prescription, you MUST use the `check_drug_interactions` tool to verify against the patient's current medications and allergies. Mention the result in `interaction_check_summary`.
|
| 54 |
+
5. **Tool Utilization:** Employ the provided tools (`order_lab_test`, `prescribe_medication`, `check_drug_interactions`, `flag_risk`, `tavily_search_results`) precisely when indicated by your plan. Adhere strictly to tool schemas. Do NOT hallucinate tool usage results; wait for actual tool output if required in a multi-turn scenario (though this implementation focuses on single-turn analysis with tool calls).
|
| 55 |
+
6. **Evidence-Based:** Briefly cite reasoning, drawing on general medical knowledge. Use Tavily Search for specific guideline checks or novel information when necessary.
|
| 56 |
+
7. **Clarity and Conciseness:** Be clear, avoiding ambiguity. Use standard medical terminology.
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
# --- Mock Data / Helpers ---
|
| 60 |
+
# (In a real system, this would be a proper API/database)
|
| 61 |
+
MOCK_INTERACTION_DB = {
|
| 62 |
+
("Lisinopril", "Spironolactone"): "High risk of hyperkalemia. Monitor potassium closely.",
|
| 63 |
+
("Warfarin", "Amiodarone"): "Increased bleeding risk. Monitor INR frequently and adjust Warfarin dose.",
|
| 64 |
+
("Simvastatin", "Clarithromycin"): "Increased risk of myopathy/rhabdomyolysis. Avoid combination or use lower statin dose.",
|
| 65 |
+
("Aspirin", "Ibuprofen"): "Concurrent use may decrease Aspirin's cardioprotective effect. Potential for increased GI bleeding."
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
ALLERGY_INTERACTIONS = {
|
| 69 |
+
"Penicillin": ["Amoxicillin", "Ampicillin", "Piperacillin"],
|
| 70 |
+
"Sulfa": ["Sulfamethoxazole", "Sulfasalazine"],
|
| 71 |
+
"Aspirin": ["Ibuprofen", "Naproxen"] # Cross-reactivity example for NSAIDs
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
|
| 75 |
+
"""Parses BP string like '120/80' into (systolic, diastolic) integers."""
|
| 76 |
+
match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string)
|
| 77 |
+
if match:
|
| 78 |
+
return int(match.group(1)), int(match.group(2))
|
| 79 |
+
return None
|
| 80 |
+
|
| 81 |
+
def check_red_flags(patient_data: dict) -> List[str]:
|
| 82 |
+
"""Checks patient data against predefined red flags."""
|
| 83 |
+
flags = []
|
| 84 |
+
symptoms = patient_data.get("hpi", {}).get("symptoms", [])
|
| 85 |
+
vitals = patient_data.get("vitals", {})
|
| 86 |
+
history = patient_data.get("pmh", {}).get("conditions", "")
|
| 87 |
+
|
| 88 |
+
# Symptom Flags
|
| 89 |
+
if "chest pain" in [s.lower() for s in symptoms]: flags.append("Red Flag: Chest Pain reported.")
|
| 90 |
+
if "shortness of breath" in [s.lower() for s in symptoms]: flags.append("Red Flag: Shortness of Breath reported.")
|
| 91 |
+
if "severe headache" in [s.lower() for s in symptoms]: flags.append("Red Flag: Severe Headache reported.")
|
| 92 |
+
if "sudden vision loss" in [s.lower() for s in symptoms]: flags.append("Red Flag: Sudden Vision Loss reported.")
|
| 93 |
+
if "weakness on one side" in [s.lower() for s in symptoms]: flags.append("Red Flag: Unilateral Weakness reported (potential stroke).")
|
| 94 |
+
|
| 95 |
+
# Vital Sign Flags (add more checks as needed)
|
| 96 |
+
if "temp_c" in vitals and vitals["temp_c"] >= 38.5: flags.append(f"Red Flag: Fever (Temperature: {vitals['temp_c']}Β°C).")
|
| 97 |
+
if "hr_bpm" in vitals and vitals["hr_bpm"] >= 120: flags.append(f"Red Flag: Tachycardia (Heart Rate: {vitals['hr_bpm']} bpm).")
|
| 98 |
+
if "rr_rpm" in vitals and vitals["rr_rpm"] >= 24: flags.append(f"Red Flag: Tachypnea (Respiratory Rate: {vitals['rr_rpm']} rpm).")
|
| 99 |
+
if "spo2_percent" in vitals and vitals["spo2_percent"] <= 92: flags.append(f"Red Flag: Hypoxia (SpO2: {vitals['spo2_percent']}%).")
|
| 100 |
+
if "bp_mmhg" in vitals:
|
| 101 |
+
bp = parse_bp(vitals["bp_mmhg"])
|
| 102 |
+
if bp:
|
| 103 |
+
if bp[0] >= 180 or bp[1] >= 110: flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {vitals['bp_mmhg']} mmHg).")
|
| 104 |
+
if bp[0] <= 90 and bp[1] <= 60: flags.append(f"Red Flag: Hypotension (BP: {vitals['bp_mmhg']} mmHg).")
|
| 105 |
+
|
| 106 |
+
# History Flags (Simple examples)
|
| 107 |
+
if "history of mi" in history.lower() and "chest pain" in [s.lower() for s in symptoms]: flags.append("Red Flag: History of MI with current Chest Pain.")
|
| 108 |
+
|
| 109 |
+
return flags
|
| 110 |
+
|
| 111 |
+
# --- Enhanced Tool Definitions ---
|
| 112 |
+
|
| 113 |
+
# Use Pydantic models for robust argument validation
|
| 114 |
+
class LabOrderInput(BaseModel):
|
| 115 |
+
test_name: str = Field(..., description="Specific name of the lab test or panel (e.g., 'CBC', 'BMP', 'Troponin I', 'Urinalysis').")
|
| 116 |
+
reason: str = Field(..., description="Clinical justification for ordering the test (e.g., 'Rule out infection', 'Assess renal function', 'Evaluate for ACS').")
|
| 117 |
+
priority: str = Field("Routine", description="Priority of the test (e.g., 'STAT', 'Routine').")
|
| 118 |
+
|
| 119 |
+
@tool("order_lab_test", args_schema=LabOrderInput)
|
| 120 |
+
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
|
| 121 |
+
"""Orders a specific lab test with clinical justification and priority."""
|
| 122 |
+
return json.dumps({
|
| 123 |
+
"status": "success",
|
| 124 |
+
"message": f"Lab Ordered: {test_name} ({priority})",
|
| 125 |
+
"details": f"Reason: {reason}"
|
| 126 |
+
})
|
| 127 |
+
|
| 128 |
+
class PrescriptionInput(BaseModel):
|
| 129 |
+
medication_name: str = Field(..., description="Name of the medication.")
|
| 130 |
+
dosage: str = Field(..., description="Dosage amount and unit (e.g., '500 mg', '10 mg').")
|
| 131 |
+
route: str = Field(..., description="Route of administration (e.g., 'PO', 'IV', 'IM', 'Topical').")
|
| 132 |
+
frequency: str = Field(..., description="How often the medication should be taken (e.g., 'BID', 'QDaily', 'Q4-6H PRN').")
|
| 133 |
+
duration: str = Field("As directed", description="Duration of treatment (e.g., '7 days', '1 month', 'Until follow-up').")
|
| 134 |
+
reason: str = Field(..., description="Clinical indication for the prescription.")
|
| 135 |
+
|
| 136 |
+
@tool("prescribe_medication", args_schema=PrescriptionInput)
|
| 137 |
+
def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
|
| 138 |
+
"""Prescribes a medication with detailed instructions and clinical indication."""
|
| 139 |
+
# In a real scenario, this would trigger an e-prescription workflow
|
| 140 |
+
return json.dumps({
|
| 141 |
+
"status": "success",
|
| 142 |
+
"message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}",
|
| 143 |
+
"details": f"Duration: {duration}. Reason: {reason}"
|
| 144 |
+
})
|
| 145 |
+
|
| 146 |
+
class InteractionCheckInput(BaseModel):
|
| 147 |
+
potential_prescription: str = Field(..., description="The name of the NEW medication being considered.")
|
| 148 |
+
current_medications: List[str] = Field(..., description="List of the patient's CURRENT medication names.")
|
| 149 |
+
allergies: List[str] = Field(..., description="List of the patient's known allergies.")
|
| 150 |
+
|
| 151 |
+
@tool("check_drug_interactions", args_schema=InteractionCheckInput)
|
| 152 |
+
def check_drug_interactions(potential_prescription: str, current_medications: List[str], allergies: List[str]) -> str:
|
| 153 |
+
"""Checks for potential drug-drug and drug-allergy interactions BEFORE prescribing."""
|
| 154 |
+
warnings = []
|
| 155 |
+
potential_med_lower = potential_prescription.lower()
|
| 156 |
+
|
| 157 |
+
# Check Allergies
|
| 158 |
+
for allergy in allergies:
|
| 159 |
+
allergy_lower = allergy.lower()
|
| 160 |
+
# Simple direct check
|
| 161 |
+
if allergy_lower == potential_med_lower:
|
| 162 |
+
warnings.append(f"CRITICAL ALLERGY: Patient allergic to {allergy}. Cannot prescribe {potential_prescription}.")
|
| 163 |
+
continue
|
| 164 |
+
# Check cross-reactivity (using simplified mock data)
|
| 165 |
+
if allergy_lower in ALLERGY_INTERACTIONS:
|
| 166 |
+
for cross_reactant in ALLERGY_INTERACTIONS[allergy_lower]:
|
| 167 |
+
if cross_reactant.lower() == potential_med_lower:
|
| 168 |
+
warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to {allergy}. High risk with {potential_prescription}.")
|
| 169 |
+
|
| 170 |
+
# Check Drug-Drug Interactions (using simplified mock data)
|
| 171 |
+
current_meds_lower = [med.lower() for med in current_medications]
|
| 172 |
+
for current_med in current_meds_lower:
|
| 173 |
+
# Check pairs in both orders
|
| 174 |
+
pair1 = (current_med, potential_med_lower)
|
| 175 |
+
pair2 = (potential_med_lower, current_med)
|
| 176 |
+
if pair1 in MOCK_INTERACTION_DB:
|
| 177 |
+
warnings.append(f"Interaction Found: {potential_prescription} with {current_med.capitalize()} - {MOCK_INTERACTION_DB[pair1]}")
|
| 178 |
+
elif pair2 in MOCK_INTERACTION_DB:
|
| 179 |
+
warnings.append(f"Interaction Found: {potential_prescription} with {current_med.capitalize()} - {MOCK_INTERACTION_DB[pair2]}")
|
| 180 |
+
|
| 181 |
+
if not warnings:
|
| 182 |
+
return json.dumps({"status": "clear", "message": f"No major interactions identified for {potential_prescription} with current meds/allergies.", "warnings": []})
|
| 183 |
+
else:
|
| 184 |
+
return json.dumps({"status": "warning", "message": f"Potential interactions identified for {potential_prescription}.", "warnings": warnings})
|
| 185 |
+
|
| 186 |
+
class FlagRiskInput(BaseModel):
|
| 187 |
+
risk_description: str = Field(..., description="Specific critical risk identified (e.g., 'Suspected Sepsis', 'Acute Coronary Syndrome', 'Stroke Alert').")
|
| 188 |
+
urgency: str = Field("High", description="Urgency level (e.g., 'Critical', 'High', 'Moderate').")
|
| 189 |
+
|
| 190 |
+
@tool("flag_risk", args_schema=FlagRiskInput)
|
| 191 |
+
def flag_risk(risk_description: str, urgency: str) -> str:
|
| 192 |
+
"""Flags a critical risk identified during analysis for immediate attention."""
|
| 193 |
+
st.error(f"π¨ **{urgency.upper()} RISK FLAGGED:** {risk_description}", icon="π¨")
|
| 194 |
+
return json.dumps({
|
| 195 |
+
"status": "flagged",
|
| 196 |
+
"message": f"Risk '{risk_description}' flagged with {urgency} urgency."
|
| 197 |
+
})
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
# Initialize Search Tool
|
| 201 |
+
search_tool = TavilySearchResults(max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS)
|
| 202 |
+
|
| 203 |
+
# --- Core Agent Logic ---
|
| 204 |
+
class ClinicalAgent:
|
| 205 |
def __init__(self):
|
| 206 |
+
self.model = ChatGroq(
|
| 207 |
+
temperature=ClinicalAppSettings.TEMPERATURE,
|
| 208 |
+
model=ClinicalAppSettings.MODEL_NAME
|
| 209 |
+
)
|
| 210 |
+
# Combine all tools
|
| 211 |
+
self.tools = [
|
| 212 |
+
order_lab_test,
|
| 213 |
+
prescribe_medication,
|
| 214 |
+
check_drug_interactions,
|
| 215 |
+
flag_risk,
|
| 216 |
+
search_tool
|
| 217 |
+
]
|
| 218 |
+
# Bind tools to the model
|
| 219 |
+
self.model_with_tools = self.model.bind_tools(self.tools)
|
| 220 |
+
# History for context (simple implementation)
|
| 221 |
+
self.history = []
|
| 222 |
|
| 223 |
+
def _format_patient_data_for_prompt(self, data: dict) -> str:
|
| 224 |
+
"""Formats the patient dictionary into a readable string for the LLM."""
|
| 225 |
+
prompt_str = "Patient Data:\n"
|
| 226 |
+
for key, value in data.items():
|
| 227 |
+
if isinstance(value, dict):
|
| 228 |
+
prompt_str += f" {key.replace('_', ' ').title()}:\n"
|
| 229 |
+
for sub_key, sub_value in value.items():
|
| 230 |
+
if sub_value: # Only include if there's data
|
| 231 |
+
prompt_str += f" - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
|
| 232 |
+
elif isinstance(value, list) and value:
|
| 233 |
+
prompt_str += f" {key.replace('_', ' ').title()}: {', '.join(map(str, value))}\n"
|
| 234 |
+
elif value: # Only include non-empty fields
|
| 235 |
+
prompt_str += f" {key.replace('_', ' ').title()}: {value}\n"
|
| 236 |
+
return prompt_str.strip()
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def analyze(self, patient_data: dict) -> tuple[Optional[dict], List[dict]]:
|
| 240 |
+
"""Runs the analysis, handling tool calls and parsing the structured output."""
|
| 241 |
try:
|
| 242 |
+
# Add System Prompt and formatted Patient Data
|
| 243 |
+
# Simple history management: add previous messages if any
|
| 244 |
+
messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)]
|
| 245 |
+
# Include history if needed - consider token limits
|
| 246 |
+
# messages.extend(self.history)
|
| 247 |
+
formatted_data = self._format_patient_data_for_prompt(patient_data)
|
| 248 |
+
messages.append(HumanMessage(content=formatted_data))
|
| 249 |
+
|
| 250 |
+
# Invoke the model
|
| 251 |
+
ai_response = self.model_with_tools.invoke(messages)
|
| 252 |
+
|
| 253 |
+
# Store conversation turn
|
| 254 |
+
# self.history.append(HumanMessage(content=formatted_data))
|
| 255 |
+
# self.history.append(ai_response) # AIMessage includes tool calls
|
| 256 |
+
|
| 257 |
+
response_content = None
|
| 258 |
+
tool_calls = []
|
| 259 |
+
|
| 260 |
+
if isinstance(ai_response, AIMessage):
|
| 261 |
+
# Check if the response contains the structured JSON output
|
| 262 |
+
try:
|
| 263 |
+
# Sometimes the JSON is embedded in the content, sometimes it's the primary content
|
| 264 |
+
# Look for ```json ... ``` block first
|
| 265 |
+
json_match = re.search(r"```json\n(\{.*?\})\n```", ai_response.content, re.DOTALL)
|
| 266 |
+
if json_match:
|
| 267 |
+
response_content = json.loads(json_match.group(1))
|
| 268 |
+
else:
|
| 269 |
+
# Try parsing the whole content as JSON
|
| 270 |
+
response_content = json.loads(ai_response.content)
|
| 271 |
+
except json.JSONDecodeError:
|
| 272 |
+
st.warning("AI did not return valid JSON in the expected format. Displaying raw content.")
|
| 273 |
+
st.code(ai_response.content, language=None) # Display raw if not JSON
|
| 274 |
+
response_content = {"assessment": ai_response.content, "error": "Output format incorrect"}
|
| 275 |
+
|
| 276 |
+
# Extract tool calls separately
|
| 277 |
+
if ai_response.tool_calls:
|
| 278 |
+
tool_calls = ai_response.tool_calls
|
| 279 |
+
|
| 280 |
+
return response_content, tool_calls
|
| 281 |
+
|
| 282 |
except Exception as e:
|
| 283 |
+
st.error(f"Error during AI analysis: {str(e)}")
|
| 284 |
+
return None, []
|
| 285 |
+
|
| 286 |
+
def process_tool_call(self, tool_call: Dict[str, Any]) -> Any:
|
| 287 |
+
"""Executes a single tool call."""
|
| 288 |
+
tool_name = tool_call.get("name")
|
| 289 |
+
tool_args = tool_call.get("args", {})
|
| 290 |
+
selected_tool = {t.name: t for t in self.tools}.get(tool_name)
|
| 291 |
+
|
| 292 |
+
if not selected_tool:
|
| 293 |
+
return json.dumps({"status": "error", "message": f"Unknown tool: {tool_name}"})
|
| 294 |
|
|
|
|
| 295 |
try:
|
| 296 |
+
# Ensure args are correctly passed (Pydantic models handle validation)
|
| 297 |
+
return selected_tool.invoke(tool_args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
except Exception as e:
|
| 299 |
+
st.error(f"Error executing tool '{tool_name}': {str(e)}")
|
| 300 |
+
return json.dumps({"status": "error", "message": f"Failed to execute {tool_name}: {str(e)}"})
|
| 301 |
|
| 302 |
+
# --- Streamlit UI ---
|
| 303 |
def main():
|
| 304 |
+
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
|
| 305 |
+
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}")
|
| 306 |
+
st.caption(f"Powered by Langchain & Groq ({ClinicalAppSettings.MODEL_NAME})")
|
| 307 |
+
|
| 308 |
+
# Initialize Agent in session state
|
| 309 |
if 'agent' not in st.session_state:
|
| 310 |
+
st.session_state.agent = ClinicalAgent()
|
| 311 |
+
if 'analysis_complete' not in st.session_state:
|
| 312 |
+
st.session_state.analysis_complete = False
|
| 313 |
+
if 'analysis_result' not in st.session_state:
|
| 314 |
+
st.session_state.analysis_result = None
|
| 315 |
+
if 'tool_call_results' not in st.session_state:
|
| 316 |
+
st.session_state.tool_call_results = []
|
| 317 |
+
if 'red_flags' not in st.session_state:
|
| 318 |
+
st.session_state.red_flags = []
|
| 319 |
+
|
| 320 |
+
# --- Patient Data Input Sidebar ---
|
| 321 |
with st.sidebar:
|
| 322 |
+
st.header("π Patient Intake Form")
|
| 323 |
+
|
| 324 |
+
# Demographics
|
| 325 |
+
st.subheader("Demographics")
|
| 326 |
+
age = st.number_input("Age", min_value=0, max_value=120, value=55)
|
| 327 |
+
sex = st.selectbox("Biological Sex", ["Male", "Female", "Other/Prefer not to say"])
|
| 328 |
+
|
| 329 |
+
# History of Present Illness (HPI)
|
| 330 |
+
st.subheader("History of Present Illness (HPI)")
|
| 331 |
+
chief_complaint = st.text_input("Chief Complaint", "Chest pain")
|
| 332 |
+
hpi_details = st.text_area("Detailed HPI", "55 y/o male presents with substernal chest pain started 2 hours ago, described as pressure, radiating to left arm. Associated with nausea and diaphoresis. Pain is 8/10 severity. No relief with rest.")
|
| 333 |
+
symptoms = st.multiselect("Associated Symptoms", ["Nausea", "Diaphoresis", "Shortness of Breath", "Dizziness", "Palpitations", "Fever", "Cough"], default=["Nausea", "Diaphoresis"])
|
| 334 |
+
|
| 335 |
+
# Past Medical/Surgical History (PMH/PSH)
|
| 336 |
+
st.subheader("Past History")
|
| 337 |
+
pmh = st.text_area("Past Medical History (PMH)", "Hypertension (HTN), Hyperlipidemia (HLD), Type 2 Diabetes Mellitus (DM2)")
|
| 338 |
+
psh = st.text_area("Past Surgical History (PSH)", "Appendectomy (2005)")
|
| 339 |
+
|
| 340 |
+
# Medications & Allergies
|
| 341 |
+
st.subheader("Medications & Allergies")
|
| 342 |
+
current_meds = st.text_area("Current Medications (name, dose, freq)", "Lisinopril 10mg daily\nMetformin 1000mg BID\nAtorvastatin 40mg daily\nAspirin 81mg daily")
|
| 343 |
+
allergies = st.text_area("Allergies (comma separated)", "Penicillin (rash)")
|
| 344 |
+
|
| 345 |
+
# Social & Family History (SH/FH)
|
| 346 |
+
st.subheader("Social/Family History")
|
| 347 |
+
social_history = st.text_area("Social History (SH)", "Smoker (1 ppd x 30 years), occasional alcohol.")
|
| 348 |
+
family_history = st.text_area("Family History (FHx)", "Father had MI at age 60. Mother has HTN.")
|
| 349 |
+
|
| 350 |
+
# Review of Systems (ROS) - Simplified
|
| 351 |
+
# st.subheader("Review of Systems (ROS)") # Keep UI cleaner for now
|
| 352 |
+
# ros_constitutional = st.checkbox("ROS: Constitutional (Fever, Chills, Weight loss)")
|
| 353 |
+
# ros_cardiac = st.checkbox("ROS: Cardiac (Chest pain, Palpitations)", value=True) # Pre-check based on HPI
|
| 354 |
+
|
| 355 |
+
# Vitals & Basic Exam
|
| 356 |
+
st.subheader("Vitals & Exam Findings")
|
| 357 |
+
col1, col2 = st.columns(2)
|
| 358 |
+
with col1:
|
| 359 |
+
temp_c = st.number_input("Temperature (Β°C)", 35.0, 42.0, 36.8, format="%.1f")
|
| 360 |
+
hr_bpm = st.number_input("Heart Rate (bpm)", 30, 250, 95)
|
| 361 |
+
rr_rpm = st.number_input("Respiratory Rate (rpm)", 5, 50, 18)
|
| 362 |
+
with col2:
|
| 363 |
+
bp_mmhg = st.text_input("Blood Pressure (SYS/DIA)", "155/90")
|
| 364 |
+
spo2_percent = st.number_input("SpO2 (%)", 70, 100, 96)
|
| 365 |
+
pain_scale = st.slider("Pain (0-10)", 0, 10, 8)
|
| 366 |
+
exam_notes = st.text_area("Brief Physical Exam Notes", "Awake, alert, oriented x3. Mild distress. Lungs clear. Cardiac exam: Regular rhythm, no murmurs/gallops. Abdomen soft. No edema.")
|
| 367 |
+
|
| 368 |
+
# Clean medication list and allergies for processing
|
| 369 |
+
current_meds_list = [med.strip() for med in current_meds.split('\n') if med.strip()]
|
| 370 |
+
current_med_names = [med.split(' ')[0].strip() for med in current_meds_list] # Simplified name extraction
|
| 371 |
+
allergies_list = [a.strip() for a in allergies.split(',') if a.strip()]
|
| 372 |
+
|
| 373 |
+
# Compile Patient Data Dictionary
|
| 374 |
patient_data = {
|
| 375 |
+
"demographics": {"age": age, "sex": sex},
|
| 376 |
+
"hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
|
| 377 |
+
"pmh": {"conditions": pmh},
|
| 378 |
+
"psh": {"procedures": psh},
|
| 379 |
+
"medications": {"current": current_meds_list, "names_only": current_med_names},
|
| 380 |
+
"allergies": allergies_list,
|
| 381 |
+
"social_history": {"details": social_history},
|
| 382 |
+
"family_history": {"details": family_history},
|
| 383 |
+
# "ros": {"constitutional": ros_constitutional, "cardiac": ros_cardiac}, # Add if using ROS inputs
|
| 384 |
"vitals": {
|
| 385 |
+
"temp_c": temp_c, "hr_bpm": hr_bpm, "bp_mmhg": bp_mmhg,
|
| 386 |
+
"rr_rpm": rr_rpm, "spo2_percent": spo2_percent, "pain_scale": pain_scale
|
| 387 |
+
},
|
| 388 |
+
"exam_findings": {"notes": exam_notes}
|
| 389 |
}
|
| 390 |
+
|
| 391 |
+
# --- Main Analysis Area ---
|
| 392 |
+
st.header("π€ AI Clinical Analysis")
|
| 393 |
+
|
| 394 |
+
# Action Button
|
| 395 |
+
if st.button("Analyze Patient Data", type="primary", use_container_width=True):
|
| 396 |
+
st.session_state.analysis_complete = False
|
| 397 |
+
st.session_state.analysis_result = None
|
| 398 |
+
st.session_state.tool_call_results = []
|
| 399 |
+
st.session_state.red_flags = []
|
| 400 |
+
|
| 401 |
+
# 1. Initial Red Flag Check (Client-side before LLM)
|
| 402 |
+
st.session_state.red_flags = check_red_flags(patient_data)
|
| 403 |
+
if st.session_state.red_flags:
|
| 404 |
+
st.warning("**Initial Red Flags Detected:**")
|
| 405 |
+
for flag in st.session_state.red_flags:
|
| 406 |
+
st.warning(f"- {flag}")
|
| 407 |
+
st.warning("Proceeding with AI analysis, but these require immediate attention.")
|
| 408 |
+
|
| 409 |
+
# 2. Call AI Agent
|
| 410 |
+
with st.spinner("SynapseAI is processing the case... Please wait."):
|
| 411 |
+
analysis_output, tool_calls = st.session_state.agent.analyze(patient_data)
|
| 412 |
+
|
| 413 |
+
if analysis_output:
|
| 414 |
+
st.session_state.analysis_result = analysis_output
|
| 415 |
+
st.session_state.analysis_complete = True
|
| 416 |
+
|
| 417 |
+
# 3. Process any Tool Calls requested by the AI
|
| 418 |
+
if tool_calls:
|
| 419 |
+
st.info(f"AI recommended {len(tool_calls)} action(s). Executing...")
|
| 420 |
+
tool_results = []
|
| 421 |
+
with st.spinner("Executing recommended actions..."):
|
| 422 |
+
for call in tool_calls:
|
| 423 |
+
st.write(f"βοΈ Requesting: `{call['name']}` with args `{call['args']}`")
|
| 424 |
+
# Pass patient context if needed (e.g., for interaction check)
|
| 425 |
+
if call['name'] == 'check_drug_interactions':
|
| 426 |
+
call['args']['current_medications'] = patient_data['medications']['names_only']
|
| 427 |
+
call['args']['allergies'] = patient_data['allergies']
|
| 428 |
+
elif call['name'] == 'prescribe_medication':
|
| 429 |
+
# Pre-flight check: Ensure interaction check was requested *before* this prescribe call
|
| 430 |
+
interaction_check_requested = any(tc['name'] == 'check_drug_interactions' and tc['args'].get('potential_prescription') == call['args'].get('medication_name') for tc in tool_calls)
|
| 431 |
+
if not interaction_check_requested:
|
| 432 |
+
st.error(f"**Safety Violation:** AI attempted to prescribe '{call['args'].get('medication_name')}' without requesting `check_drug_interactions` first. Prescription blocked.")
|
| 433 |
+
tool_results.append({"tool_call_id": call['id'], "name": call['name'], "output": json.dumps({"status":"error", "message": "Interaction check not performed prior to prescription attempt."})})
|
| 434 |
+
continue # Skip this tool call
|
| 435 |
+
|
| 436 |
+
result = st.session_state.agent.process_tool_call(call)
|
| 437 |
+
tool_results.append({"tool_call_id": call['id'], "name": call['name'], "output": result}) # Store result with ID
|
| 438 |
+
|
| 439 |
+
# Display tool result immediately
|
| 440 |
+
try:
|
| 441 |
+
result_data = json.loads(result)
|
| 442 |
+
if result_data.get("status") == "success" or result_data.get("status") == "clear" or result_data.get("status") == "flagged":
|
| 443 |
+
st.success(f"β
Action `{call['name']}`: {result_data.get('message')}", icon="β
")
|
| 444 |
+
if result_data.get("details"): st.caption(f"Details: {result_data.get('details')}")
|
| 445 |
+
elif result_data.get("status") == "warning":
|
| 446 |
+
st.warning(f"β οΈ Action `{call['name']}`: {result_data.get('message')}", icon="β οΈ")
|
| 447 |
+
if result_data.get("warnings"):
|
| 448 |
+
for warn in result_data["warnings"]: st.caption(f"- {warn}")
|
| 449 |
+
else:
|
| 450 |
+
st.error(f"β Action `{call['name']}`: {result_data.get('message')}", icon="β")
|
| 451 |
+
except json.JSONDecodeError:
|
| 452 |
+
st.error(f"Tool `{call['name']}` returned non-JSON: {result}") # Fallback for non-JSON results
|
| 453 |
+
|
| 454 |
+
st.session_state.tool_call_results = tool_results
|
| 455 |
+
# Optionally: Send results back to LLM for final summary (requires multi-turn agent)
|
| 456 |
+
else:
|
| 457 |
+
st.error("Analysis failed. Please check the input data or try again.")
|
| 458 |
+
|
| 459 |
+
# --- Display Analysis Results ---
|
| 460 |
+
if st.session_state.analysis_complete and st.session_state.analysis_result:
|
| 461 |
+
st.divider()
|
| 462 |
+
st.header("π Analysis & Recommendations")
|
| 463 |
+
|
| 464 |
+
res = st.session_state.analysis_result
|
| 465 |
+
|
| 466 |
+
# Layout columns for better readability
|
| 467 |
+
col_assessment, col_plan = st.columns(2)
|
| 468 |
+
|
| 469 |
+
with col_assessment:
|
| 470 |
+
st.subheader("π Assessment")
|
| 471 |
+
st.write(res.get("assessment", "N/A"))
|
| 472 |
+
|
| 473 |
+
st.subheader("π€ Differential Diagnosis")
|
| 474 |
+
ddx = res.get("differential_diagnosis", [])
|
| 475 |
+
if ddx:
|
| 476 |
+
for item in ddx:
|
| 477 |
+
likelihood = item.get('likelihood', 'Unknown').capitalize()
|
| 478 |
+
icon = "π₯" if likelihood=="High" else ("π₯" if likelihood=="Medium" else "π₯")
|
| 479 |
+
with st.expander(f"{icon} {item.get('diagnosis', 'Unknown Diagnosis')} ({likelihood} Likelihood)", expanded=(likelihood=="High")):
|
| 480 |
+
st.write(f"**Rationale:** {item.get('rationale', 'N/A')}")
|
| 481 |
+
else:
|
| 482 |
+
st.info("No differential diagnosis provided.")
|
| 483 |
+
|
| 484 |
+
st.subheader("π¨ Risk Assessment")
|
| 485 |
+
risk = res.get("risk_assessment", {})
|
| 486 |
+
flags = risk.get("identified_red_flags", []) + [f.replace("Red Flag: ", "") for f in st.session_state.red_flags] # Combine AI and initial flags
|
| 487 |
+
if flags:
|
| 488 |
+
st.warning(f"**Identified Red Flags:** {', '.join(flags)}")
|
| 489 |
+
else:
|
| 490 |
+
st.success("No immediate red flags identified by AI in this analysis.")
|
| 491 |
+
|
| 492 |
+
if risk.get("immediate_concerns"):
|
| 493 |
+
st.warning(f"**Immediate Concerns:** {', '.join(risk.get('immediate_concerns'))}")
|
| 494 |
+
if risk.get("potential_complications"):
|
| 495 |
+
st.info(f"**Potential Complications:** {', '.join(risk.get('potential_complications'))}")
|
| 496 |
+
|
| 497 |
+
|
| 498 |
+
with col_plan:
|
| 499 |
+
st.subheader("π Recommended Plan")
|
| 500 |
+
plan = res.get("recommended_plan", {})
|
| 501 |
+
|
| 502 |
+
st.markdown("**Investigations:**")
|
| 503 |
+
if plan.get("investigations"):
|
| 504 |
+
st.markdown("\n".join([f"- {inv}" for inv in plan.get("investigations")]))
|
| 505 |
+
else: st.markdown("_None suggested._")
|
| 506 |
+
|
| 507 |
+
st.markdown("**Therapeutics:**")
|
| 508 |
+
if plan.get("therapeutics"):
|
| 509 |
+
st.markdown("\n".join([f"- {thx}" for thx in plan.get("therapeutics")]))
|
| 510 |
+
else: st.markdown("_None suggested._")
|
| 511 |
+
|
| 512 |
+
st.markdown("**Consultations:**")
|
| 513 |
+
if plan.get("consultations"):
|
| 514 |
+
st.markdown("\n".join([f"- {con}" for con in plan.get("consultations")]))
|
| 515 |
+
else: st.markdown("_None suggested._")
|
| 516 |
+
|
| 517 |
+
st.markdown("**Patient Education:**")
|
| 518 |
+
if plan.get("patient_education"):
|
| 519 |
+
st.markdown("\n".join([f"- {edu}" for edu in plan.get("patient_education")]))
|
| 520 |
+
else: st.markdown("_None specified._")
|
| 521 |
+
|
| 522 |
+
# Display Rationale and Interaction Summary below the columns
|
| 523 |
+
st.subheader("π§ AI Rationale & Checks")
|
| 524 |
+
with st.expander("Show AI Reasoning Summary", expanded=False):
|
| 525 |
+
st.write(res.get("rationale_summary", "No rationale summary provided."))
|
| 526 |
+
|
| 527 |
+
interaction_summary = res.get("interaction_check_summary", "")
|
| 528 |
+
if interaction_summary: # Only show if interaction check was relevant/performed
|
| 529 |
+
with st.expander("Drug Interaction Check Summary", expanded=True):
|
| 530 |
+
st.write(interaction_summary)
|
| 531 |
+
# Also show detailed results from the tool call itself if available
|
| 532 |
+
for tool_res in st.session_state.tool_call_results:
|
| 533 |
+
if tool_res['name'] == 'check_drug_interactions':
|
| 534 |
+
try:
|
| 535 |
+
data = json.loads(tool_res['output'])
|
| 536 |
+
if data.get('warnings'):
|
| 537 |
+
st.warning("Interaction Details:")
|
| 538 |
+
for warn in data['warnings']:
|
| 539 |
+
st.caption(f"- {warn}")
|
| 540 |
+
else:
|
| 541 |
+
st.success("Interaction Details: " + data.get('message', 'Check complete.'))
|
| 542 |
+
except: pass # Ignore parsing errors here
|
| 543 |
+
|
| 544 |
+
# Display raw JSON if needed for debugging
|
| 545 |
+
with st.expander("Show Raw AI Output (JSON)"):
|
| 546 |
+
st.json(res)
|
| 547 |
+
|
| 548 |
+
st.divider()
|
| 549 |
+
st.success("Analysis Complete.")
|
| 550 |
+
|
| 551 |
+
# Disclaimer
|
| 552 |
+
st.markdown("---")
|
| 553 |
+
st.warning(
|
| 554 |
+
"""**Disclaimer:** SynapseAI is an AI assistant for clinical decision support and does not replace professional medical judgment.
|
| 555 |
+
All outputs should be critically reviewed by a qualified healthcare provider before making any clinical decisions.
|
| 556 |
+
Verify all information, especially dosages and interactions, independently."""
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
|
| 560 |
if __name__ == "__main__":
|
| 561 |
main()
|