Spaces:
Sleeping
Sleeping
File size: 3,596 Bytes
5d480b1 e2c04b6 5d480b1 a75a9dc 5d480b1 7f4ed38 5d480b1 a75a9dc 5d480b1 e2c04b6 5d480b1 2efa720 5d480b1 e2c04b6 5d480b1 a75a9dc 5d480b1 a75a9dc 5d480b1 a75a9dc 5d480b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
# genesis/pipeline.py
import os
import re
from datetime import datetime
from typing import Dict, Any, List
from .ontology import expand_terms_with_ontology
from .structures import fetch_structures_for_terms
from .narration import narrate_text
from .graphdb import write_topic_and_papers
from .providers import run_deepseek_summary, run_gemini_polish, run_openai_image, pubmed_fallback_search
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
UMLS_API_KEY = os.getenv("UMLS_API_KEY")
BIOPORTAL_API_KEY = os.getenv("BIOPORTAL_API_KEY")
NCBI_API_KEY = os.getenv("NCBI_API_KEY")
NCBI_EMAIL = os.getenv("NCBI_EMAIL")
ELEVEN_LABS_API_KEY = os.getenv("ELEVEN_LABS_API_KEY")
NEO4J_URI = os.getenv("NEO4J_URI")
SYNBIO_MODE = True
DEMO_QUERIES = [
"Map all CRISPR-based living therapeutics in clinical trials since 2020",
"Graph metabolic engineering pathways for bio-based drug production",
"Synthetic biology startups developing oncolytic viruses β funding + trials",
"3D bioprinting advances for organ transplantation with regulatory analysis",
"AI-driven biosensor design for early cancer detection"
]
def extract_citations(text: str) -> List[Dict[str, str]]:
citations = []
doi_pattern = r"(10\.\d{4,9}/[-._;()/:A-Z0-9]+)"
pmid_pattern = r"PMID:\s*(\d+)"
url_pattern = r"(https?://[^\s)]+)"
for match in re.finditer(doi_pattern, text, re.IGNORECASE):
citations.append({"type": "DOI", "id": match.group(1), "url": f"https://doi.org/{match.group(1)}"})
for match in re.finditer(pmid_pattern, text, re.IGNORECASE):
citations.append({"type": "PMID", "id": match.group(1), "url": f"https://pubmed.ncbi.nlm.nih.gov/{match.group(1)}/"})
for match in re.finditer(url_pattern, text, re.IGNORECASE):
if not any(c["url"] == match.group(1) for c in citations):
citations.append({"type": "URL", "id": "", "url": match.group(1)})
return citations
def synthetic_biology_prompt_inject(query: str, expanded_terms: List[str]) -> str:
synbio_context = (
"You are an expert synthetic biologist and AI researcher. "
"Focus on CRISPR, metabolic engineering, living therapeutics, protein design, "
"biosensors, and biosecurity. Integrate literature, molecular structures, market trends, "
"and policy/regulatory outlook. Produce a structured, citation-rich report."
)
return f"{synbio_context}\n\nQuery: {query}\nExpanded terms: {', '.join(expanded_terms)}"
def research_once(query: str, graph_preview: bool = True, narration: bool = True) -> Dict[str, Any]:
expanded_terms = expand_terms_with_ontology(query, UMLS_API_KEY, BIOPORTAL_API_KEY)
enriched_query = synthetic_biology_prompt_inject(query, expanded_terms) if SYNBIO_MODE else query
raw_summary = run_deepseek_summary(enriched_query)
polished_summary = run_gemini_polish(raw_summary)
citations = extract_citations(polished_summary) or pubmed_fallback_search(query, NCBI_API_KEY, NCBI_EMAIL)
structures = fetch_structures_for_terms(expanded_terms)
visual_image_url = run_openai_image(query)
if graph_preview and NEO4J_URI:
write_topic_and_papers(query, citations, expanded_terms)
audio_url = narrate_text(polished_summary) if narration and ELEVEN_LABS_API_KEY else None
return {
"timestamp": datetime.utcnow().isoformat(),
"query": query,
"expanded_terms": expanded_terms,
"summary": polished_summary,
"citations": citations,
"structures": structures,
"visual_image_url": visual_image_url,
"audio_url": audio_url
}
|