Spaces:
Sleeping
Sleeping
File size: 3,589 Bytes
335600f 45f823c 335600f fdfd8f7 45f823c fdfd8f7 45f823c fdfd8f7 6edcaf6 45f823c fdfd8f7 68d6a9c fdfd8f7 45f823c 7fac952 fdfd8f7 b781adc fdfd8f7 68d6a9c fdfd8f7 6edcaf6 5eb3323 fdfd8f7 45f823c 5eb3323 fdfd8f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import gradio as gr
from genesis.pipeline import research_once
from genesis.visualization import generate_pathway_graph, generate_funding_network
# Preloaded killer demo queries
DEMO_QUERIES = [
"CRISPR living therapeutics in clinical trials since 2020",
"AI-designed enzymes for plastic degradation β literature + pathways",
"Synthetic biology startups in oncology β funding map",
"Metabolic pathway for artemisinin biosynthesis in yeast",
"Oncolytic virus engineering β biosecurity risk analysis"
]
def run_literature_review(query):
report = research_once(query)
return (
report["summary"],
report["citations"],
report["structures"],
report["visual_image_url"],
report["audio_url"]
)
def run_pathway_graph():
entities = ["CRISPR", "Cas9", "DNA Repair", "Therapeutic Delivery"]
relationships = [
{"source": "CRISPR", "target": "Cas9", "type": "guides"},
{"source": "Cas9", "target": "DNA Repair", "type": "triggers"},
{"source": "DNA Repair", "target": "Therapeutic Delivery", "type": "enables"}
]
return generate_pathway_graph(entities, relationships)
def run_funding_network():
companies = [
{"name": "SynBioCorp", "investors": "Sequoia Capital, Andreessen Horowitz"},
{"name": "BioTheraX", "investors": "SoftBank, ARCH Venture Partners"}
]
return generate_funding_network(companies)
with gr.Blocks(theme=gr.themes.Soft(primary_hue="emerald", secondary_hue="lime")) as app:
gr.Markdown("# 𧬠GENESIS-AI β Synthetic Biology Command Center")
gr.Markdown("A next-generation **lab instrument** for literature review, pathway mapping, funding analysis, and biosecurity insights.")
with gr.Row():
query_input = gr.Textbox(label="Enter your research query", placeholder="e.g., CRISPR living therapeutics in clinical trials since 2020", lines=2)
run_button = gr.Button("π Run Literature Review", variant="primary")
gr.Markdown("### πΉ Or click a demo query:")
with gr.Row():
demo_btns = []
for dq in DEMO_QUERIES:
btn = gr.Button(dq)
btn.click(fn=lambda q=dq: run_literature_review(q),
inputs=[],
outputs=["summary_box", "citations_box", "structures_box", "image_out", "audio_out"])
demo_btns.append(btn)
with gr.Tab("π Summary"):
summary_box = gr.Textbox(label="AI-Generated Summary", lines=15, interactive=False)
with gr.Tab("π Citations"):
citations_box = gr.JSON(label="Citations")
with gr.Tab("π§ͺ Structures"):
structures_box = gr.JSON(label="3D Molecular Structures")
with gr.Tab("πΌ Diagram"):
image_out = gr.Image(label="Generated Diagram")
with gr.Tab("π Narration"):
audio_out = gr.Audio(label="Narrated Summary", type="filepath")
gr.Markdown("## π§ Additional Tools")
with gr.Row():
pathway_btn = gr.Button("𧬠Generate Pathway Graph")
pathway_img = gr.Image(label="Pathway Graph")
pathway_btn.click(fn=run_pathway_graph, inputs=[], outputs=pathway_img)
funding_btn = gr.Button("π° Generate Funding Network")
funding_img = gr.Image(label="Funding Network")
funding_btn.click(fn=run_funding_network, inputs=[], outputs=funding_img)
# Link main run button
run_button.click(
fn=run_literature_review,
inputs=query_input,
outputs=[summary_box, citations_box, structures_box, image_out, audio_out]
)
app.launch()
|