File size: 3,030 Bytes
e3c954b
 
335600f
 
 
 
 
 
e3c954b
 
335600f
 
e3c954b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335600f
e3c954b
 
 
 
 
335600f
 
 
 
 
e3c954b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335600f
 
 
 
 
 
 
 
 
e3c954b
 
335600f
e3c954b
 
 
 
 
335600f
 
e3c954b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
rom __future__ import annotations
import os, json, asyncio, io
import gradio as gr
from dotenv import load_dotenv

load_dotenv()

from genesis.pipeline import research_once
from genesis.providers import postprocess_summary
from genesis.graph import build_preview_graph_html

APP_TITLE = "GENESIS-AI β€” Synthetic Biology Deep Research (Safety-First)"
APP_DESC = (
    "High-level synthetic biology literature synthesis with citations. "
    "This app **never** produces operational protocols."
)

DEFAULT_POST = os.getenv("POSTPROCESSOR_DEFAULT", "none").lower()
DEFAULT_RERANK_MODEL = os.getenv("RERANK_MODEL", "mixedbread-ai/mxbai-rerank-large-v1")

async def run_pipeline(query: str, fast: bool, postprocessor: str, want_graph: bool) -> tuple:
    out = await research_once(query, fast=fast, rerank_model=DEFAULT_RERANK_MODEL)

    # Optional post-processing (Gemini/DeepSeek) for polish ONLY (no lab steps)
    if postprocessor and postprocessor != "none":
        out["final_output"] = await postprocess_summary(
            base_text=out.get("final_output") or "",
            citations=out.get("citations", []),
            engine=postprocessor,
        )

    # Optional graph preview
    graph_html = None
    if want_graph:
        graph_html = build_preview_graph_html(out.get("citations", []))

    final_md = out.get("final_output") or "_No output_"
    cites_md = "
".join([f"- [{c.get('title','link')}]({c.get('url','')})" for c in out.get("citations", [])]) or "_None detected_"
    json_blob = json.dumps(out, indent=2)
    return final_md, cites_md, json_blob, graph_html

with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
    gr.Markdown(f"# {APP_TITLE}")
    gr.Markdown(APP_DESC)

    with gr.Row():
        query = gr.Textbox(
            label="Your high-level research request",
            lines=5,
            placeholder=(
                "e.g., High-level synthesis of CRISPR base-editing trends in oncology (last 2 years). "
                "Summarize mechanisms, targets, ethics, and provide citations."
            ),
        )
    with gr.Row():
        fast = gr.Checkbox(label="Fast mode (o4-mini-deep-research)", value=False)
        post = gr.Dropdown(
            label="Post-processor",
            choices=["none", "gemini", "deepseek"],
            value=DEFAULT_POST,
            allow_custom_value=False,
        )
        want_graph = gr.Checkbox(label="Build graph preview", value=False)
    go = gr.Button("Run Deep Research", variant="primary")

    with gr.Tabs():
        with gr.Tab("Research Report"):
            report = gr.Markdown()
        with gr.Tab("Citations"):
            citations = gr.Markdown()
        with gr.Tab("JSON Export"):
            json_out = gr.Code(language="json")
        with gr.Tab("Graph Preview"):
            graph_html = gr.HTML()

    go.click(
        fn=run_pipeline,
        inputs=[query, fast, post, want_graph],
        outputs=[report, citations, json_out, graph_html],
    )

if __name__ == "__main__":
    demo.launch()