Spaces:
Sleeping
Sleeping
File size: 6,977 Bytes
e589553 7984ae1 2f85a76 e589553 8cec585 e589553 2f85a76 e589553 2f85a76 8cec585 e589553 7984ae1 e589553 7984ae1 e589553 7984ae1 e589553 7984ae1 e589553 2f85a76 e589553 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# app.py
import os
import gradio as gr
from genesis.pipeline import (
run_literature_mode,
run_molecule_mode,
run_pathway_mode,
run_funding_mode,
run_image_mode
)
from genesis.utils.pdf_export import export_pdf_report
# Load CSS
with open(os.path.join("genesis", "static", "style.css"), "r") as f:
custom_css = f.read()
HF_SPACE = os.environ.get("HF_SPACE", "false").lower() == "true"
# ---------------------------------------------------------
# Wrappers to ensure click-to-run functionality
# ---------------------------------------------------------
def literature_tab(query, narration, export_pdf):
result = run_literature_mode(query, narration=narration)
pdf_path = None
if export_pdf:
pdf_path = export_pdf_report(result)
return (
result.get("summary", ""),
result.get("citations", []),
result.get("visuals", None),
result.get("audio_url", None),
pdf_path
)
def molecule_tab(identifier, narration, export_pdf):
result = run_molecule_mode(identifier, narration=narration)
pdf_path = None
if export_pdf:
pdf_path = export_pdf_report(result)
return (
result.get("summary", ""),
result.get("structure_3d", None),
result.get("properties", ""),
result.get("audio_url", None),
pdf_path
)
def pathway_tab(pathway_name, narration, export_pdf):
result = run_pathway_mode(pathway_name, narration=narration)
pdf_path = None
if export_pdf:
pdf_path = export_pdf_report(result)
return (
result.get("summary", ""),
result.get("graph_svg", None),
result.get("analysis", ""),
result.get("audio_url", None),
pdf_path
)
def funding_tab(query, narration, export_pdf):
result = run_funding_mode(query, narration=narration)
pdf_path = None
if export_pdf:
pdf_path = export_pdf_report(result)
return (
result.get("summary", ""),
result.get("funding_graph", None),
result.get("top_investors", ""),
result.get("audio_url", None),
pdf_path
)
def image_tab(image, narration, export_pdf):
result = run_image_mode(image, narration=narration)
pdf_path = None
if export_pdf:
pdf_path = export_pdf_report(result)
return (
result.get("summary", ""),
result.get("annotations", None),
result.get("enhanced_image", None),
result.get("audio_url", None),
pdf_path
)
# ---------------------------------------------------------
# Build Gradio Interface
# ---------------------------------------------------------
with gr.Blocks(css=custom_css, theme=gr.themes.Monochrome()) as demo:
gr.Markdown("# 𧬠GENESIS-AI β The Synthetic Biology OS")
gr.Markdown("Multi-modal AI for Literature, Molecules, Pathways, Funding, and Images.")
with gr.Tab("π Literature Review"):
with gr.Row():
query = gr.Textbox(label="Research Query")
narration = gr.Checkbox(label="Enable Narration", value=False)
export_pdf = gr.Checkbox(label="Export PDF", value=False)
run_btn = gr.Button("Run Literature Review π")
summary = gr.Textbox(label="Summary", lines=10)
citations = gr.JSON(label="Citations")
visuals = gr.Image(label="Visuals")
audio_url = gr.Audio(label="Narration Audio")
pdf_out = gr.File(label="Download PDF")
run_btn.click(
literature_tab,
inputs=[query, narration, export_pdf],
outputs=[summary, citations, visuals, audio_url, pdf_out]
)
with gr.Tab("π§ͺ Molecule Explorer"):
identifier = gr.Textbox(label="Molecule Name / Gene ID")
narration2 = gr.Checkbox(label="Enable Narration", value=False)
export_pdf2 = gr.Checkbox(label="Export PDF", value=False)
run_btn2 = gr.Button("Run Molecule Analysis π")
summary2 = gr.Textbox(label="Summary", lines=10)
structure_3d = gr.HTML(label="3D Structure Viewer")
properties = gr.Textbox(label="Properties")
audio_url2 = gr.Audio(label="Narration Audio")
pdf_out2 = gr.File(label="Download PDF")
run_btn2.click(
molecule_tab,
inputs=[identifier, narration2, export_pdf2],
outputs=[summary2, structure_3d, properties, audio_url2, pdf_out2]
)
with gr.Tab("𧬠Pathway Mapper"):
pathway_name = gr.Textbox(label="Pathway Name")
narration3 = gr.Checkbox(label="Enable Narration", value=False)
export_pdf3 = gr.Checkbox(label="Export PDF", value=False)
run_btn3 = gr.Button("Run Pathway Mapping π§©")
summary3 = gr.Textbox(label="Summary", lines=10)
graph_svg = gr.HTML(label="Pathway Graph")
analysis = gr.Textbox(label="Analysis")
audio_url3 = gr.Audio(label="Narration Audio")
pdf_out3 = gr.File(label="Download PDF")
run_btn3.click(
pathway_tab,
inputs=[pathway_name, narration3, export_pdf3],
outputs=[summary3, graph_svg, analysis, audio_url3, pdf_out3]
)
with gr.Tab("π° Funding Network"):
funding_query = gr.Textbox(label="Funding Query (global)")
narration4 = gr.Checkbox(label="Enable Narration", value=False)
export_pdf4 = gr.Checkbox(label="Export PDF", value=False)
run_btn4 = gr.Button("Run Funding Analysis π")
summary4 = gr.Textbox(label="Summary", lines=10)
funding_graph = gr.HTML(label="Funding Network Graph")
top_investors = gr.Textbox(label="Top Investors")
audio_url4 = gr.Audio(label="Narration Audio")
pdf_out4 = gr.File(label="Download PDF")
run_btn4.click(
funding_tab,
inputs=[funding_query, narration4, export_pdf4],
outputs=[summary4, funding_graph, top_investors, audio_url4, pdf_out4]
)
with gr.Tab("πΌοΈ Image Analysis"):
img_input = gr.Image(type="filepath", label="Upload Microscopy or Diagram")
narration5 = gr.Checkbox(label="Enable Narration", value=False)
export_pdf5 = gr.Checkbox(label="Export PDF", value=False)
run_btn5 = gr.Button("Run Image Analysis πΌοΈ")
summary5 = gr.Textbox(label="Summary", lines=10)
annotations = gr.Image(label="Annotated Image")
enhanced_image = gr.Image(label="Enhanced Image")
audio_url5 = gr.Audio(label="Narration Audio")
pdf_out5 = gr.File(label="Download PDF")
run_btn5.click(
image_tab,
inputs=[img_input, narration5, export_pdf5],
outputs=[summary5, annotations, enhanced_image, audio_url5, pdf_out5]
)
# ---------------------------------------------------------
# Launch
# ---------------------------------------------------------
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=HF_SPACE)
|