Synthetic_Biology / genesis /providers.py
mgbam's picture
Update genesis/providers.py
afd6eb2 verified
raw
history blame
4.16 kB
import os
import requests
from typing import List, Dict
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
NCBI_API_KEY = os.getenv("NCBI_API_KEY")
NCBI_EMAIL = os.getenv("NCBI_EMAIL")
# -------- DeepSeek Summary --------
def run_deepseek_summary(prompt: str) -> str:
"""Run a dense scientific summary using DeepSeek API."""
try:
url = "https://api.deepseek.com/v1/chat/completions"
headers = {"Authorization": f"Bearer {HF_TOKEN}", "Content-Type": "application/json"}
payload = {
"model": "deepseek-science",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.2
}
r = requests.post(url, headers=headers, json=payload, timeout=60)
r.raise_for_status()
data = r.json()
return data["choices"][0]["message"]["content"]
except Exception as e:
print(f"[DeepSeek] Failed: {e}")
return prompt
# -------- Gemini Polish --------
def run_gemini_polish(text: str) -> str:
"""Polish the summary using Gemini."""
if not GEMINI_API_KEY:
return text
try:
url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent?key={GEMINI_API_KEY}"
payload = {"contents": [{"parts": [{"text": f"Polish and clarify this research report:\n\n{text}"}]}]}
r = requests.post(url, json=payload, timeout=30)
r.raise_for_status()
data = r.json()
return data["candidates"][0]["content"]["parts"][0]["text"]
except Exception as e:
print(f"[Gemini] Failed: {e}")
return text
# -------- OpenAI Image --------
def run_openai_image(prompt: str) -> str:
"""Generate image using OpenAI API."""
if not OPENAI_API_KEY:
return None
try:
url = "https://api.openai.com/v1/images/generations"
headers = {"Authorization": f"Bearer {OPENAI_API_KEY}"}
payload = {
"model": "gpt-image-1",
"prompt": f"Highly detailed scientific diagram: {prompt}",
"size": "1024x1024"
}
r = requests.post(url, headers=headers, json=payload, timeout=60)
r.raise_for_status()
data = r.json()
return data["data"][0]["url"]
except Exception as e:
print(f"[OpenAI Image] Failed: {e}")
return None
# -------- Hugging Face Image (Fallback) --------
def run_hf_image(prompt: str) -> str:
"""Generate image using Hugging Face Stable Diffusion."""
if not HF_TOKEN:
return None
try:
url = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
payload = {"inputs": prompt}
r = requests.post(url, headers=headers, json=payload, timeout=60)
r.raise_for_status()
# Hugging Face returns raw image bytes, so we save to file
image_path = f"generated_{hash(prompt)}.png"
with open(image_path, "wb") as f:
f.write(r.content)
return image_path
except Exception as e:
print(f"[HF Image] Failed: {e}")
return None
# -------- PubMed Fallback --------
def pubmed_fallback_search(query: str, api_key: str, email: str) -> List[Dict]:
"""Search PubMed if no citations found."""
results = []
if not api_key or not email:
return results
try:
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
params = {
"db": "pubmed",
"term": query,
"retmax": 3,
"api_key": api_key,
"email": email,
"retmode": "json"
}
r = requests.get(base_url, params=params, timeout=10)
r.raise_for_status()
ids = r.json().get("esearchresult", {}).get("idlist", [])
for pmid in ids:
results.append({
"type": "PMID",
"id": pmid,
"url": f"https://pubmed.ncbi.nlm.nih.gov/{pmid}/"
})
except Exception as e:
print(f"[PubMed] Failed: {e}")
return results