mgbam's picture
Upload 5 files
335600f verified
raw
history blame
1.57 kB
from __future__ import annotations
import os, asyncio, json
import gradio as gr
from dotenv import load_dotenv
load_dotenv()
from genesis.pipeline import research_once
APP_TITLE = "GENESIS-AI β€” Synthetic Biology Deep Research (Safety-First)"
APP_DESC = "High-level synthetic biology literature synthesis with citations. This app **never** produces operational protocols."
async def run_research(query: str, fast: bool):
out = await research_once(query, fast=fast)
final_text = out.get("final_output") or "_No output_"
cites = out.get("citations", [])
cites_md = "\n".join([f"- [{c.get('title','link')}]({c.get('url','')})" for c in cites]) or "_None detected_"
return final_text, cites_md, json.dumps(out, indent=2)
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
gr.Markdown(f"# {APP_TITLE}")
gr.Markdown(APP_DESC)
query = gr.Textbox(label="Your high-level research request", lines=4, placeholder="e.g., High-level synthesis of CRISPR base-editing trends in oncology (last 2 years).")
fast = gr.Checkbox(label="Fast mode (o4-mini-deep-research)", value=False)
go = gr.Button("Run Deep Research", variant="primary")
with gr.Tabs():
with gr.Tab("Research Report"):
report = gr.Markdown()
with gr.Tab("Citations"):
citations = gr.Markdown()
with gr.Tab("JSON Export"):
json_out = gr.Code(language="json")
go.click(fn=run_research, inputs=[query, fast], outputs=[report, citations, json_out])
if __name__ == "__main__":
demo.launch()