Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,88 +1,105 @@
|
|
1 |
"""
|
2 |
AI Resume Studio โ Hugging Face Space
|
3 |
Author: Oluwafemi Idiakhoa
|
4 |
-
|
5 |
|
6 |
Features
|
7 |
โโโโโโโโ
|
8 |
-
1. Generate
|
9 |
-
2. Score
|
10 |
3. AI Section Co-Pilot (rewrite, quantify, bulletizeโฆ)
|
11 |
4. Cover-letter generator
|
12 |
-
5. Job-description
|
13 |
6. Multilingual export via Deep-Translator (DeepL backend)
|
14 |
"""
|
15 |
|
16 |
-
import os
|
17 |
-
import tempfile
|
18 |
import requests
|
19 |
import gradio as gr
|
20 |
import google.generativeai as genai
|
21 |
from dotenv import load_dotenv
|
22 |
-
from
|
23 |
-
from docx import Document # python-docx
|
24 |
from reportlab.lib.pagesizes import LETTER
|
25 |
from reportlab.pdfgen import canvas
|
26 |
from deep_translator import DeeplTranslator
|
27 |
|
28 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
29 |
-
#
|
30 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
31 |
load_dotenv()
|
32 |
|
33 |
-
# Gemini
|
34 |
-
genai.configure(api_key=os.getenv("
|
35 |
GEMINI = genai.GenerativeModel("gemini-1.5-pro-latest")
|
36 |
|
37 |
# DeepL via Deep-Translator
|
38 |
DEEPL_KEY = os.getenv("DEEPL_API_KEY")
|
39 |
-
|
40 |
-
|
41 |
-
if not DEEPL_KEY or target_code == "EN":
|
42 |
-
return text
|
43 |
try:
|
44 |
-
return DeeplTranslator(api_key=DEEPL_KEY, target=
|
45 |
except Exception as e:
|
46 |
return f"[Translation Error] {e}\n\n{text}"
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
"
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
63 |
-
# AI
|
64 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
65 |
def ask_gemini(prompt: str, temp: float = 0.6) -> str:
|
66 |
try:
|
67 |
-
|
68 |
-
return res.text.strip()
|
69 |
except Exception as e:
|
70 |
return f"[Gemini Error] {e}"
|
71 |
|
72 |
-
def save_docx(
|
73 |
f = tempfile.NamedTemporaryFile(delete=False, suffix=".docx")
|
74 |
doc = Document()
|
75 |
-
for line in
|
76 |
doc.add_paragraph(line)
|
77 |
doc.save(f.name)
|
78 |
return f.name
|
79 |
|
80 |
-
def save_pdf(
|
81 |
f = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
82 |
c = canvas.Canvas(f.name, pagesize=LETTER)
|
83 |
width, height = LETTER
|
84 |
y = height - 72
|
85 |
-
for line in
|
86 |
c.drawString(72, y, line)
|
87 |
y -= 14
|
88 |
if y < 72:
|
@@ -92,18 +109,23 @@ def save_pdf(content: str) -> str:
|
|
92 |
return f.name
|
93 |
|
94 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
95 |
-
# Core
|
96 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
prompt = f"""
|
99 |
-
Create a professional rรฉsumรฉ in Markdown
|
100 |
-
Output language: {LANGS[lang_code]}
|
101 |
|
102 |
Name: {name}
|
103 |
Email: {email}
|
104 |
Phone: {phone}
|
105 |
|
106 |
-
|
107 |
{summary}
|
108 |
|
109 |
Experience:
|
@@ -116,35 +138,32 @@ Skills:
|
|
116 |
{skills}
|
117 |
"""
|
118 |
md = ask_gemini(prompt)
|
119 |
-
return translate_text(md,
|
|
|
|
|
|
|
|
|
120 |
|
121 |
def score_resume(resume_md, job_desc):
|
122 |
prompt = f"""
|
123 |
-
Evaluate this rรฉsumรฉ
|
124 |
|
125 |
### Match Score
|
126 |
<0-100>
|
127 |
|
128 |
### Suggestions
|
129 |
-
-
|
130 |
-
- suggestion 2
|
131 |
"""
|
132 |
return ask_gemini(prompt, temp=0.4)
|
133 |
|
134 |
-
def refine_section(section,
|
135 |
-
prompt = f""
|
136 |
-
Apply the following instruction to this rรฉsumรฉ section. Respond in {LANGS[lang_code]}.
|
137 |
-
|
138 |
-
Instruction: {instruction}
|
139 |
-
Section:
|
140 |
-
{section}
|
141 |
-
"""
|
142 |
out = ask_gemini(prompt)
|
143 |
-
return translate_text(out,
|
144 |
|
145 |
-
def generate_cover_letter(resume_md, job_desc, tone,
|
146 |
prompt = f"""
|
147 |
-
Draft a one-page cover letter (
|
148 |
Salutation: "Dear Hiring Manager,"
|
149 |
|
150 |
Rรฉsumรฉ:
|
@@ -154,88 +173,67 @@ Job Description:
|
|
154 |
{job_desc}
|
155 |
"""
|
156 |
letter = ask_gemini(prompt)
|
157 |
-
return translate_text(letter,
|
158 |
-
|
159 |
-
def scrape_job_description(url):
|
160 |
-
try:
|
161 |
-
hdr = {"User-Agent": "Mozilla/5.0"}
|
162 |
-
r = requests.get(url, headers=hdr, timeout=10)
|
163 |
-
soup = BeautifulSoup(r.text, "html.parser")
|
164 |
-
for sel in ["div.jobsearch-jobDescriptionText", "section.description", "div.jobs-description__content"]:
|
165 |
-
block = soup.select_one(sel)
|
166 |
-
if block:
|
167 |
-
return block.get_text(" ", strip=True)
|
168 |
-
return soup.get_text(" ", strip=True)[:3000]
|
169 |
-
except Exception as e:
|
170 |
-
return f"[Scrape Error] {e}"
|
171 |
-
|
172 |
-
def generate_and_export(name, email, phone, summary, exp, edu, skills, lang_code):
|
173 |
-
md = generate_resume(name, email, phone, summary, exp, edu, skills, lang_code)
|
174 |
-
return md, save_docx(md), save_pdf(md)
|
175 |
|
176 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
177 |
# Gradio UI
|
178 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
179 |
with gr.Blocks(title="AI Resume Studio") as demo:
|
180 |
-
gr.Markdown("## ๐ง
|
181 |
|
182 |
-
# Generate
|
183 |
-
with gr.Tab("๐ Generate
|
184 |
with gr.Row():
|
185 |
name_in, email_in, phone_in = gr.Textbox(label="Name"), gr.Textbox(label="Email"), gr.Textbox(label="Phone")
|
186 |
-
|
187 |
-
exp_in
|
188 |
-
edu_in
|
189 |
-
skills_in
|
190 |
-
lang_in
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
gen_btn
|
196 |
|
197 |
gen_btn.click(
|
198 |
generate_and_export,
|
199 |
-
inputs=[name_in, email_in, phone_in,
|
200 |
-
outputs=[
|
201 |
)
|
202 |
|
203 |
-
# Score
|
204 |
-
with gr.Tab("๐งฎ Score
|
205 |
-
|
206 |
-
|
207 |
-
score_out
|
208 |
-
score_btn
|
209 |
-
|
210 |
-
score_btn.click(score_resume, inputs=[resume_score_in, jd_score_in], outputs=score_out)
|
211 |
|
212 |
-
# AI Section Co-Pilot
|
213 |
with gr.Tab("โ๏ธ AI Section Co-Pilot"):
|
214 |
-
sec_in
|
215 |
-
|
216 |
-
|
217 |
-
sec_out
|
218 |
-
sec_btn
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
# Cover-Letter Generator
|
223 |
with gr.Tab("๐ง Cover-Letter Generator"):
|
224 |
-
|
225 |
-
|
226 |
-
cv_tone
|
227 |
-
cv_lang
|
228 |
-
cv_out
|
229 |
-
cv_btn
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
scrape_btn.click(scrape_job_description, inputs=[url_in], outputs=[jd_out])
|
240 |
|
241 |
demo.launch(share=False)
|
|
|
1 |
"""
|
2 |
AI Resume Studio โ Hugging Face Space
|
3 |
Author: Oluwafemi Idiakhoa
|
4 |
+
Updated: 2025-06-27
|
5 |
|
6 |
Features
|
7 |
โโโโโโโโ
|
8 |
+
1. Generate rรฉsumรฉ โ Word & PDF downloads
|
9 |
+
2. Score rรฉsumรฉ vs. job description
|
10 |
3. AI Section Co-Pilot (rewrite, quantify, bulletizeโฆ)
|
11 |
4. Cover-letter generator
|
12 |
+
5. Job-description via LinkedIn API (OAuth client_credentials)
|
13 |
6. Multilingual export via Deep-Translator (DeepL backend)
|
14 |
"""
|
15 |
|
16 |
+
import os, re, tempfile
|
|
|
17 |
import requests
|
18 |
import gradio as gr
|
19 |
import google.generativeai as genai
|
20 |
from dotenv import load_dotenv
|
21 |
+
from docx import Document
|
|
|
22 |
from reportlab.lib.pagesizes import LETTER
|
23 |
from reportlab.pdfgen import canvas
|
24 |
from deep_translator import DeeplTranslator
|
25 |
|
26 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
27 |
+
# Load secrets & configure services
|
28 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
29 |
load_dotenv()
|
30 |
|
31 |
+
# Gemini setup
|
32 |
+
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
|
33 |
GEMINI = genai.GenerativeModel("gemini-1.5-pro-latest")
|
34 |
|
35 |
# DeepL via Deep-Translator
|
36 |
DEEPL_KEY = os.getenv("DEEPL_API_KEY")
|
37 |
+
def translate_text(text: str, tgt: str) -> str:
|
38 |
+
if not DEEPL_KEY or tgt.upper()=="EN": return text
|
|
|
|
|
39 |
try:
|
40 |
+
return DeeplTranslator(api_key=DEEPL_KEY, target=tgt).translate(text)
|
41 |
except Exception as e:
|
42 |
return f"[Translation Error] {e}\n\n{text}"
|
43 |
|
44 |
+
# LinkedIn OAuth 2.0 Client-Credentials
|
45 |
+
LINKEDIN_CLIENT_ID = os.getenv("LINKEDIN_CLIENT_ID")
|
46 |
+
LINKEDIN_CLIENT_SECRET = os.getenv("LINKEDIN_CLIENT_SECRET")
|
47 |
+
_TOKEN_CACHE = {}
|
48 |
+
def get_linkedin_token():
|
49 |
+
# cache until expiry
|
50 |
+
token_data = _TOKEN_CACHE.get("data")
|
51 |
+
if token_data and token_data["expires_at"] > time.time():
|
52 |
+
return token_data["access_token"]
|
53 |
+
resp = requests.post(
|
54 |
+
"https://www.linkedin.com/oauth/v2/accessToken",
|
55 |
+
data={
|
56 |
+
"grant_type": "client_credentials",
|
57 |
+
"client_id": LINKEDIN_CLIENT_ID,
|
58 |
+
"client_secret": LINKEDIN_CLIENT_SECRET,
|
59 |
+
},
|
60 |
+
)
|
61 |
+
resp.raise_for_status()
|
62 |
+
data = resp.json()
|
63 |
+
data["expires_at"] = time.time() + data.get("expires_in", 0) - 60
|
64 |
+
_TOKEN_CACHE["data"] = data
|
65 |
+
return data["access_token"]
|
66 |
+
|
67 |
+
def fetch_job_via_api(job_url: str) -> str:
|
68 |
+
job_id = (re.search(r"/jobs/view/(\d+)", job_url) or re.search(r"currentJobId=(\d+)", job_url))
|
69 |
+
if not job_id:
|
70 |
+
return "[Error] Unable to parse job ID from URL."
|
71 |
+
token = get_linkedin_token()
|
72 |
+
headers = {"Authorization": f"Bearer {token}"}
|
73 |
+
# LinkedIn v2 Jobs endpoint (requires r_jobs scope)
|
74 |
+
api_url = f"https://api.linkedin.com/v2/jobPosts/{job_id.group(1)}?projection=(description)"
|
75 |
+
r = requests.get(api_url, headers=headers, timeout=10)
|
76 |
+
if r.status_code != 200:
|
77 |
+
return f"[LinkedIn API Error {r.status_code}] {r.text}"
|
78 |
+
return r.json().get("description", "")
|
79 |
|
80 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
81 |
+
# AI & File utilities
|
82 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
83 |
def ask_gemini(prompt: str, temp: float = 0.6) -> str:
|
84 |
try:
|
85 |
+
return GEMINI.generate_content(prompt, generation_config={"temperature": temp}).text.strip()
|
|
|
86 |
except Exception as e:
|
87 |
return f"[Gemini Error] {e}"
|
88 |
|
89 |
+
def save_docx(text: str) -> str:
|
90 |
f = tempfile.NamedTemporaryFile(delete=False, suffix=".docx")
|
91 |
doc = Document()
|
92 |
+
for line in text.splitlines():
|
93 |
doc.add_paragraph(line)
|
94 |
doc.save(f.name)
|
95 |
return f.name
|
96 |
|
97 |
+
def save_pdf(text: str) -> str:
|
98 |
f = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
99 |
c = canvas.Canvas(f.name, pagesize=LETTER)
|
100 |
width, height = LETTER
|
101 |
y = height - 72
|
102 |
+
for line in text.splitlines():
|
103 |
c.drawString(72, y, line)
|
104 |
y -= 14
|
105 |
if y < 72:
|
|
|
109 |
return f.name
|
110 |
|
111 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
112 |
+
# Core application logic
|
113 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
114 |
+
LANGS = {
|
115 |
+
"EN": "English", "DE": "German", "FR": "French", "ES": "Spanish",
|
116 |
+
"IT": "Italian", "NL": "Dutch", "PT": "Portuguese","PL": "Polish",
|
117 |
+
"JA": "Japanese","ZH": "Chinese"
|
118 |
+
}
|
119 |
+
|
120 |
+
def generate_resume(name, email, phone, summary, exp, edu, skills, lang):
|
121 |
prompt = f"""
|
122 |
+
Create a professional rรฉsumรฉ in Markdownโno first-person. Output in {LANGS[lang]}.
|
|
|
123 |
|
124 |
Name: {name}
|
125 |
Email: {email}
|
126 |
Phone: {phone}
|
127 |
|
128 |
+
Summary:
|
129 |
{summary}
|
130 |
|
131 |
Experience:
|
|
|
138 |
{skills}
|
139 |
"""
|
140 |
md = ask_gemini(prompt)
|
141 |
+
return translate_text(md, lang)
|
142 |
+
|
143 |
+
def generate_and_export(name, email, phone, summary, exp, edu, skills, lang):
|
144 |
+
md = generate_resume(name, email, phone, summary, exp, edu, skills, lang)
|
145 |
+
return md, save_docx(md), save_pdf(md)
|
146 |
|
147 |
def score_resume(resume_md, job_desc):
|
148 |
prompt = f"""
|
149 |
+
Evaluate this rรฉsumรฉ vs. the job description. Return Markdown:
|
150 |
|
151 |
### Match Score
|
152 |
<0-100>
|
153 |
|
154 |
### Suggestions
|
155 |
+
- ...
|
|
|
156 |
"""
|
157 |
return ask_gemini(prompt, temp=0.4)
|
158 |
|
159 |
+
def refine_section(section, instr, lang):
|
160 |
+
prompt = f"Refine this rรฉsumรฉ section in {LANGS[lang]}.\nInstruction: {instr}\nText:\n{section}"
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
out = ask_gemini(prompt)
|
162 |
+
return translate_text(out, lang)
|
163 |
|
164 |
+
def generate_cover_letter(resume_md, job_desc, tone, lang):
|
165 |
prompt = f"""
|
166 |
+
Draft a one-page cover letter (โค300 words), {tone} tone, in {LANGS[lang]}.
|
167 |
Salutation: "Dear Hiring Manager,"
|
168 |
|
169 |
Rรฉsumรฉ:
|
|
|
173 |
{job_desc}
|
174 |
"""
|
175 |
letter = ask_gemini(prompt)
|
176 |
+
return translate_text(letter, lang)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
179 |
# Gradio UI
|
180 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
181 |
with gr.Blocks(title="AI Resume Studio") as demo:
|
182 |
+
gr.Markdown("## ๐ง AI Resume Studio (Gemini ร DeepL ร LinkedIn)")
|
183 |
|
184 |
+
# Tab 1: Generate Rรฉsumรฉ
|
185 |
+
with gr.Tab("๐ Generate Rรฉsumรฉ"):
|
186 |
with gr.Row():
|
187 |
name_in, email_in, phone_in = gr.Textbox(label="Name"), gr.Textbox(label="Email"), gr.Textbox(label="Phone")
|
188 |
+
sum_in = gr.Textbox(label="Summary")
|
189 |
+
exp_in = gr.Textbox(label="Experience")
|
190 |
+
edu_in = gr.Textbox(label="Education")
|
191 |
+
skills_in = gr.Textbox(label="Skills")
|
192 |
+
lang_in = gr.Dropdown(list(LANGS.keys()), value="EN", label="Language")
|
193 |
|
194 |
+
out_md = gr.Markdown(label="Rรฉsumรฉ (Markdown)")
|
195 |
+
out_docx = gr.File(label="โฌ Download .docx")
|
196 |
+
out_pdf = gr.File(label="โฌ Download .pdf")
|
197 |
+
gen_btn = gr.Button("Generate")
|
198 |
|
199 |
gen_btn.click(
|
200 |
generate_and_export,
|
201 |
+
inputs=[name_in, email_in, phone_in, sum_in, exp_in, edu_in, skills_in, lang_in],
|
202 |
+
outputs=[out_md, out_docx, out_pdf],
|
203 |
)
|
204 |
|
205 |
+
# Tab 2: Score Rรฉsumรฉ
|
206 |
+
with gr.Tab("๐งฎ Score Rรฉsumรฉ Against Job"):
|
207 |
+
res_in = gr.Textbox(label="Rรฉsumรฉ (Markdown)", lines=10)
|
208 |
+
jd_in = gr.Textbox(label="Job Description", lines=8)
|
209 |
+
score_out = gr.Markdown(label="Score & Suggestions")
|
210 |
+
score_btn = gr.Button("Evaluate")
|
211 |
+
score_btn.click(score_resume, inputs=[res_in, jd_in], outputs=score_out)
|
|
|
212 |
|
213 |
+
# Tab 3: AI Section Co-Pilot
|
214 |
with gr.Tab("โ๏ธ AI Section Co-Pilot"):
|
215 |
+
sec_in = gr.Textbox(label="Section Text", lines=6)
|
216 |
+
action = gr.Radio(["Rewrite","Make More Concise","Quantify Achievements","Convert to Bullet Points"], label="Action")
|
217 |
+
sec_lang = gr.Dropdown(list(LANGS.keys()), value="EN", label="Language")
|
218 |
+
sec_out = gr.Textbox(label="AI Output", lines=6)
|
219 |
+
sec_btn = gr.Button("Apply")
|
220 |
+
sec_btn.click(refine_section, inputs=[sec_in, action, sec_lang], outputs=sec_out)
|
221 |
+
|
222 |
+
# Tab 4: Cover-Letter Generator
|
|
|
223 |
with gr.Tab("๐ง Cover-Letter Generator"):
|
224 |
+
cv_res = gr.Textbox(label="Rรฉsumรฉ (Markdown)", lines=12)
|
225 |
+
cv_jd = gr.Textbox(label="Job Description", lines=8)
|
226 |
+
cv_tone = gr.Radio(["Professional","Friendly","Enthusiastic"], label="Tone")
|
227 |
+
cv_lang = gr.Dropdown(list(LANGS.keys()), value="EN", label="Language")
|
228 |
+
cv_out = gr.Markdown(label="Cover Letter")
|
229 |
+
cv_btn = gr.Button("Generate")
|
230 |
+
cv_btn.click(generate_cover_letter, inputs=[cv_res, cv_jd, cv_tone, cv_lang], outputs=cv_out)
|
231 |
+
|
232 |
+
# Tab 5: LinkedIn Job Fetcher
|
233 |
+
with gr.Tab("๐ Fetch Job via LinkedIn API"):
|
234 |
+
url_in = gr.Textbox(label="LinkedIn Job URL")
|
235 |
+
jd_out = gr.Textbox(label="Job Description", lines=12)
|
236 |
+
fetch_btn = gr.Button("Fetch from LinkedIn")
|
237 |
+
fetch_btn.click(fetch_job_via_api, inputs=[url_in], outputs=[jd_out])
|
|
|
|
|
238 |
|
239 |
demo.launch(share=False)
|