Update app.py
Browse files
app.py
CHANGED
@@ -1,158 +1,309 @@
|
|
1 |
import streamlit as st
|
2 |
-
from smolagents import CodeAgent,
|
3 |
from rdkit import Chem
|
4 |
-
from rdkit.Chem import
|
5 |
-
import
|
6 |
-
|
7 |
-
import
|
8 |
import requests
|
|
|
|
|
9 |
import pandas as pd
|
10 |
-
import
|
11 |
-
|
12 |
-
from
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
]
|
91 |
-
cytoscape(
|
92 |
-
elements=cyto_elements,
|
93 |
-
layout={'name': 'circle'},
|
94 |
-
stylesheet=[{
|
95 |
-
'selector': 'node',
|
96 |
-
'style': {'label': 'data(label)', 'font-size': '20px'}
|
97 |
-
}],
|
98 |
-
height="300px"
|
99 |
-
)
|
100 |
-
|
101 |
-
with col3:
|
102 |
-
if 'descriptors' in st.session_state:
|
103 |
-
st.markdown("**Pharmacokinetic Profile**")
|
104 |
-
for k, v in st.session_state.descriptors.items():
|
105 |
-
st.metric(k, v)
|
106 |
-
st.plotly_chart(px.bar(
|
107 |
-
x=list(st.session_state.descriptors.keys()),
|
108 |
-
y=[1, 0.7, 0.9],
|
109 |
-
title="Blood-Brain Barrier Penetration Potential"
|
110 |
-
))
|
111 |
-
|
112 |
-
# --- Neural Target Mapping ---
|
113 |
-
st.subheader("🧫 Neuro-Target Interaction Network")
|
114 |
-
if st.button("Map CNS Targets"):
|
115 |
-
with st.spinner("Analyzing human brain proteome..."):
|
116 |
-
nodes = [
|
117 |
-
{'data': {'id': 'D2', 'label': 'Dopamine D2'}},
|
118 |
-
{'data': {'id': '5HT2A', 'label': '5-HT2A'}},
|
119 |
-
{'data': {'id': 'H1', 'label': 'Histamine H1'}},
|
120 |
-
{'data': {'id': compound, 'label': compound}}
|
121 |
-
]
|
122 |
-
edges = [
|
123 |
-
{'data': {'source': compound, 'target': 'D2', 'label': 'Kd=4.2nM'}},
|
124 |
-
{'data': {'source': compound, 'target': '5HT2A', 'label': 'Kd=18nM'}},
|
125 |
-
{'data': {'source': compound, 'target': 'H1', 'label': 'Kd=2.1μM'}}
|
126 |
-
]
|
127 |
-
cytoscape(
|
128 |
-
elements=nodes + edges,
|
129 |
-
layout={'name': 'cose'},
|
130 |
-
stylesheet=[
|
131 |
-
{
|
132 |
-
'selector': 'node',
|
133 |
-
'style': {'label': 'data(label)', 'shape': 'hexagon'}
|
134 |
-
},
|
135 |
-
{
|
136 |
-
'selector': 'edge',
|
137 |
-
'style': {'label': 'data(label)', 'curve-style': 'bezier'}
|
138 |
-
}
|
139 |
-
],
|
140 |
-
height="400px"
|
141 |
-
)
|
142 |
-
|
143 |
-
# --- Virtual Clinical Trial Simulator ---
|
144 |
-
st.subheader("📈 AI Clinical Trial Predictor")
|
145 |
-
col1, col2 = st.columns(2)
|
146 |
-
with col1:
|
147 |
-
phase = st.selectbox("Trial Phase", ["Phase I", "Phase II", "Phase III"])
|
148 |
-
population = st.slider("Patient Population", 50, 5000, 200)
|
149 |
-
with col2:
|
150 |
-
endpoints = st.multiselect("Endpoints", ["PANSS", "MADRS", "CGI-S", "Neurocognitive Battery"])
|
151 |
-
if st.button("Predict Trial Outcome"):
|
152 |
-
with st.spinner("Running Monte Carlo simulations..."):
|
153 |
-
success_prob = np.random.uniform(0.3, 0.8)
|
154 |
-
st.metric("Predicted Success Probability", f"{success_prob:.0%}")
|
155 |
-
st.altair_chart(alt.Chart(pd.DataFrame({
|
156 |
-
'Week': range(1,13),
|
157 |
-
'Improvement': np.cumsum(np.random.normal(0.5, 0.2, 12))
|
158 |
-
})).mark_line().encode(x='Week', y='Improvement'))
|
|
|
1 |
import streamlit as st
|
2 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel
|
3 |
from rdkit import Chem
|
4 |
+
from rdkit.Chem import Draw
|
5 |
+
from fpdf import FPDF
|
6 |
+
import tempfile
|
7 |
+
import time
|
8 |
import requests
|
9 |
+
import xml.etree.ElementTree as ET
|
10 |
+
import json
|
11 |
import pandas as pd
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import seaborn as sns
|
14 |
+
from typing import Optional, Dict, List, Any
|
15 |
+
|
16 |
+
|
17 |
+
# API Endpoints (Centralized Configuration)
|
18 |
+
API_ENDPOINTS = {
|
19 |
+
"clinical_trials": "https://clinicaltrials.gov/api/query/full_studies",
|
20 |
+
"pubchem": "https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/{}/JSON",
|
21 |
+
"who_drugs": "https://health-products.canada.ca/api/drug/product",
|
22 |
+
"ema_reports": "https://www.ema.europa.eu/api/search/medicines",
|
23 |
+
"fda_drug_approval": "https://api.fda.gov/drug/label.json?search=openfda.brand_name:{}",
|
24 |
+
"faers_adverse_events": "https://api.fda.gov/drug/event.json?search=patient.drug.medicinalproduct:{}",
|
25 |
+
"pharmgkb": "https://api.pharmgkb.org/v1/site/variant/{}/clinicalAnnotations"
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
# Initialize AI Agent (Context-aware)
|
30 |
+
content_agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=HfApiModel())
|
31 |
+
|
32 |
+
# --- Utility Functions ---
|
33 |
+
def _query_api(endpoint: str, params: Optional[Dict] = None) -> Optional[Dict]:
|
34 |
+
"""Handles API requests with robust error handling."""
|
35 |
+
try:
|
36 |
+
response = requests.get(endpoint, params=params, timeout=15)
|
37 |
+
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
|
38 |
+
return response.json()
|
39 |
+
except requests.exceptions.RequestException as e:
|
40 |
+
st.error(f"API request failed: {e} for endpoint {endpoint}. Please check connectivity and the endpoint.")
|
41 |
+
return None
|
42 |
+
|
43 |
+
|
44 |
+
def _get_pubchem_smiles(drug_name: str) -> Optional[str]:
|
45 |
+
"""Retrieves SMILES from PubChem, returns None on failure."""
|
46 |
+
url = API_ENDPOINTS["pubchem"].format(drug_name)
|
47 |
+
data = _query_api(url)
|
48 |
+
if data and 'PC_Compounds' in data and data['PC_Compounds'][0]['props']:
|
49 |
+
#Check if props exists and find SMILES value
|
50 |
+
for prop in data['PC_Compounds'][0]['props']:
|
51 |
+
if 'name' in prop and prop['name'] == 'Canonical SMILES':
|
52 |
+
return prop['value']['sval']
|
53 |
+
return None
|
54 |
+
|
55 |
+
|
56 |
+
def _draw_molecule(smiles: str) -> Optional[any]:
|
57 |
+
"""Generates a 2D molecule image from SMILES."""
|
58 |
+
try:
|
59 |
+
mol = Chem.MolFromSmiles(smiles)
|
60 |
+
if mol:
|
61 |
+
img = Draw.MolToImage(mol)
|
62 |
+
return img
|
63 |
+
else:
|
64 |
+
st.error("Invalid SMILES string.")
|
65 |
+
return None
|
66 |
+
except Exception as e:
|
67 |
+
st.error(f"Error generating molecule image: {str(e)}")
|
68 |
+
return None
|
69 |
+
|
70 |
+
|
71 |
+
def _get_clinical_trials(query: str) -> Optional[Dict]:
|
72 |
+
"""Queries clinicaltrials.gov with search term."""
|
73 |
+
if query.upper().startswith("NCT") and query[3:].isdigit(): # Check if it's an NCT number
|
74 |
+
params = {
|
75 |
+
"id": query,
|
76 |
+
"fmt": "json"
|
77 |
+
}
|
78 |
+
else:
|
79 |
+
params = {
|
80 |
+
"expr": query,
|
81 |
+
"min_rnk": 1,
|
82 |
+
"max_rnk": 5,
|
83 |
+
"fmt": "json"
|
84 |
+
}
|
85 |
+
return _query_api(API_ENDPOINTS["clinical_trials"], params)
|
86 |
+
|
87 |
+
def _get_fda_approval(drug_name: str) -> Optional[Dict]:
|
88 |
+
"""Retrieves FDA approval info."""
|
89 |
+
url = API_ENDPOINTS["fda_drug_approval"].format(drug_name)
|
90 |
+
data = _query_api(url)
|
91 |
+
return data['results'][0] if data and 'results' in data and data['results'] else None
|
92 |
+
|
93 |
+
|
94 |
+
def _analyze_adverse_events(drug_name: str) -> Optional[Dict]:
|
95 |
+
"""Fetches and analyzes adverse event reports from FAERS."""
|
96 |
+
url = API_ENDPOINTS["faers_adverse_events"].format(drug_name)
|
97 |
+
return _query_api(url)
|
98 |
+
|
99 |
+
|
100 |
+
def _get_pharmgkb_data(gene:str) -> Optional[Dict]:
|
101 |
+
"""Fetches pharmacogenomic data from PharmGKB."""
|
102 |
+
url = "https://api.pharmgkb.org/v1/data/variant/{}/clinicalAnnotations".format(gene)
|
103 |
+
return _query_api(url)
|
104 |
+
|
105 |
+
|
106 |
+
def _save_pdf_report(report_content: str, filename: str):
|
107 |
+
"""Saves content to a PDF file."""
|
108 |
+
pdf = FPDF()
|
109 |
+
pdf.add_page()
|
110 |
+
pdf.set_font("Arial", size=12)
|
111 |
+
pdf.multi_cell(0, 10, report_content)
|
112 |
+
pdf.output(filename)
|
113 |
+
return filename
|
114 |
+
|
115 |
+
def _display_dataframe(data: list, columns: list):
|
116 |
+
"""Displays data in a dataframe format."""
|
117 |
+
if data:
|
118 |
+
df = pd.DataFrame(data, columns=columns)
|
119 |
+
st.dataframe(df)
|
120 |
+
return df
|
121 |
+
else:
|
122 |
+
st.warning("No data found for dataframe creation.")
|
123 |
+
return None
|
124 |
+
|
125 |
+
# --- Streamlit App Configuration ---
|
126 |
+
st.set_page_config(page_title="Pharma Research Expert Platform", layout="wide")
|
127 |
+
st.title("🔬 Pharma Research Expert Platform")
|
128 |
+
st.markdown("An integrated platform for drug discovery, clinical research, and regulatory affairs.")
|
129 |
+
|
130 |
+
# --- Tabs ---
|
131 |
+
tabs = st.tabs(["💊 Drug Development", "📊 Trial Analytics", "🧬 Molecular Profiling", "📜 Regulatory Intelligence"])
|
132 |
+
|
133 |
+
# --- Tab 1: Drug Development ---
|
134 |
+
with tabs[0]:
|
135 |
+
st.header("AI-Driven Drug Development Strategy")
|
136 |
+
target = st.text_input("Target Disease/Pathway:", placeholder="Enter biological target or disease mechanism")
|
137 |
+
target_gene = st.text_input("Target Gene (for pharmacogenomics)", placeholder="Enter the gene associated with target")
|
138 |
+
strategy = st.selectbox("Development Strategy:", ["First-in-class", "Me-too", "Repurposing", "Biologic"])
|
139 |
+
|
140 |
+
if st.button("Generate Development Plan"):
|
141 |
+
with st.spinner("Analyzing target and competitive landscape..."):
|
142 |
+
# AI-generated content with regulatory checks
|
143 |
+
plan_prompt = f"""Develop a comprehensive drug development plan for the treatment of {target} using a {strategy} strategy.
|
144 |
+
Include sections on target validation, lead optimization, preclinical testing, clinical trial design, regulatory submission strategy, market analysis, and competitive landscape. Highlight key milestones and potential challenges. """
|
145 |
+
plan = content_agent.run(plan_prompt)
|
146 |
+
|
147 |
+
st.subheader("Comprehensive Development Plan")
|
148 |
+
st.markdown(plan)
|
149 |
+
|
150 |
+
# Regulatory information
|
151 |
+
if target:
|
152 |
+
fda_info = _get_fda_approval(target.split()[0]) # Simple name extraction for FDA search
|
153 |
+
|
154 |
+
if fda_info:
|
155 |
+
st.subheader("FDA Regulatory Insights")
|
156 |
+
st.json(fda_info)
|
157 |
+
else:
|
158 |
+
st.write("No relevant FDA data found.")
|
159 |
+
else:
|
160 |
+
st.write("Please enter a target to get relevant FDA data")
|
161 |
+
|
162 |
+
# Pharmacogenomic integration
|
163 |
+
st.subheader("Pharmacogenomic Considerations")
|
164 |
+
pgx_data = _get_pharmgkb_data(target_gene)
|
165 |
+
if pgx_data:
|
166 |
+
st.write(pgx_data)
|
167 |
+
else:
|
168 |
+
st.write("No relevant pharmacogenomic data found.")
|
169 |
+
|
170 |
+
|
171 |
+
# --- Tab 2: Clinical Trial Analytics ---
|
172 |
+
with tabs[1]:
|
173 |
+
st.header("Clinical Trial Landscape Analytics")
|
174 |
+
trial_query = st.text_input("Search Clinical Trials:", placeholder="Enter condition, intervention, or NCT number")
|
175 |
+
|
176 |
+
if st.button("Analyze Trial Landscape"):
|
177 |
+
with st.spinner("Aggregating global trial data..."):
|
178 |
+
trials = _get_clinical_trials(trial_query)
|
179 |
+
if trials and trials['FullStudiesResponse']['FullStudies']:
|
180 |
+
st.subheader("Recent Clinical Trials")
|
181 |
+
trial_data = []
|
182 |
+
for study in trials['FullStudiesResponse']['FullStudies'][:5]:
|
183 |
+
protocol = study['Study']['ProtocolSection']
|
184 |
+
trial_data.append({
|
185 |
+
"Title": protocol['IdentificationModule']['OfficialTitle'],
|
186 |
+
"Status": protocol['StatusModule']['OverallStatus'],
|
187 |
+
"Phase": protocol['DesignModule']['PhaseList']['Phase'][0],
|
188 |
+
"Enrollment": protocol['StatusModule']['EnrollmentCount']
|
189 |
+
})
|
190 |
|
191 |
+
trial_df = _display_dataframe(trial_data, list(trial_data[0].keys())) if trial_data else None
|
192 |
+
|
193 |
+
if trial_df is not None:
|
194 |
+
st.markdown("### Clinical Trial Summary (First 5 trials)")
|
195 |
+
st.dataframe(trial_df)
|
196 |
+
|
197 |
+
|
198 |
+
# Adverse events analysis
|
199 |
+
ae_data = _analyze_adverse_events(trial_query)
|
200 |
+
if ae_data and ae_data['results']:
|
201 |
+
st.subheader("Adverse Event Profile (Top 5 Reports)")
|
202 |
+
|
203 |
+
ae_results = ae_data['results'][:5]
|
204 |
+
ae_df = pd.DataFrame(ae_results)
|
205 |
+
st.dataframe(ae_df)
|
206 |
+
|
207 |
+
#Visualization of adverse events
|
208 |
+
if 'patient' in ae_df and not ae_df.empty:
|
209 |
+
try:
|
210 |
+
drug_events = []
|
211 |
+
for patient in ae_df['patient']:
|
212 |
+
if isinstance(patient,dict) and 'drug' in patient:
|
213 |
+
for drug in patient['drug']:
|
214 |
+
if isinstance(drug,dict) and 'medicinalproduct' in drug and 'reaction' in patient:
|
215 |
+
reactions = [reaction.get('reactionmeddrapt','') for reaction in patient['reaction']]
|
216 |
+
for r in reactions:
|
217 |
+
drug_events.append((drug.get('medicinalproduct', 'N/A'), r))
|
218 |
+
|
219 |
+
df_drug_events = pd.DataFrame(drug_events,columns=['Drug', 'Reaction'])
|
220 |
+
# Aggregate and Visualize top reactions
|
221 |
+
if not df_drug_events.empty:
|
222 |
+
top_reactions = df_drug_events['Reaction'].value_counts().nlargest(10)
|
223 |
+
|
224 |
+
fig, ax = plt.subplots(figsize=(10,6))
|
225 |
+
sns.barplot(x=top_reactions.index, y=top_reactions.values, ax=ax)
|
226 |
+
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right")
|
227 |
+
plt.title('Top Adverse Reactions')
|
228 |
+
plt.xlabel('Adverse Reaction')
|
229 |
+
plt.ylabel('Frequency')
|
230 |
+
st.pyplot(fig)
|
231 |
+
|
232 |
+
#Display as dataframe
|
233 |
+
st.markdown("### Top 10 Adverse Reaction Summary")
|
234 |
+
st.dataframe(pd.DataFrame({'Reaction': top_reactions.index, 'Frequency': top_reactions.values}))
|
235 |
+
|
236 |
+
except Exception as e:
|
237 |
+
st.error(f"Error processing adverse events data: {e}")
|
238 |
+
else:
|
239 |
+
st.warning("No clinical trials found for the given search term.")
|
240 |
+
|
241 |
+
|
242 |
+
# --- Tab 3: Molecular Profiling ---
|
243 |
+
with tabs[2]:
|
244 |
+
st.header("Advanced Molecular Profiling")
|
245 |
+
compound_input = st.text_input("Compound Identifier:",
|
246 |
+
placeholder="Enter drug name, SMILES, or INN")
|
247 |
+
|
248 |
+
if st.button("Analyze Compound"):
|
249 |
+
with st.spinner("Querying global databases..."):
|
250 |
+
# SMILES resolution
|
251 |
+
smiles = compound_input if Chem.MolFromSmiles(compound_input) else _get_pubchem_smiles(compound_input)
|
252 |
+
|
253 |
+
if smiles:
|
254 |
+
img = _draw_molecule(smiles)
|
255 |
+
if img:
|
256 |
+
st.image(img, caption="2D Structure")
|
257 |
+
else:
|
258 |
+
st.error("Compound structure not found in databases.")
|
259 |
+
|
260 |
+
# PubChem properties
|
261 |
+
pubchem_data = _query_api(API_ENDPOINTS["pubchem"].format(compound_input))
|
262 |
+
if pubchem_data and 'PC_Compounds' in pubchem_data and pubchem_data['PC_Compounds']:
|
263 |
+
st.subheader("Physicochemical Properties")
|
264 |
+
props = pubchem_data['PC_Compounds'][0]['props']
|
265 |
+
mw = next((prop['value']['sval'] for prop in props if 'name' in prop and prop['name'] == 'Molecular Weight'), 'N/A')
|
266 |
+
logp = next((prop['value']['sval'] for prop in props if 'name' in prop and prop['name'] == 'LogP'), 'N/A')
|
267 |
+
|
268 |
+
st.write(f"""
|
269 |
+
Molecular Weight: {mw}
|
270 |
+
LogP: {logp}
|
271 |
+
""")
|
272 |
+
else:
|
273 |
+
st.error("Physicochemical properties not found.")
|
274 |
+
|
275 |
+
|
276 |
+
# --- Tab 4: Regulatory Intelligence ---
|
277 |
+
with tabs[3]:
|
278 |
+
st.header("Global Regulatory Monitoring")
|
279 |
+
drug_name = st.text_input("Drug Product:", placeholder="Enter generic or brand name")
|
280 |
+
|
281 |
+
if st.button("Generate Regulatory Report"):
|
282 |
+
with st.spinner("Compiling global regulatory status..."):
|
283 |
+
# Multi-regional checks
|
284 |
+
fda = _get_fda_approval(drug_name)
|
285 |
+
ema = _query_api(API_ENDPOINTS["ema_reports"], {"search": drug_name})
|
286 |
+
who = _query_api(API_ENDPOINTS["who_drugs"], {"name": drug_name})
|
287 |
|
288 |
+
st.subheader("Regulatory Status")
|
289 |
+
col1, col2, col3 = st.columns(3)
|
290 |
+
with col1:
|
291 |
+
st.markdown("**FDA Status**")
|
292 |
+
st.write(fda['openfda']['brand_name'][0] if fda and 'openfda' in fda and 'brand_name' in fda['openfda'] else "Not approved")
|
293 |
+
with col2:
|
294 |
+
st.markdown("**EMA Status**")
|
295 |
+
st.write(ema['results'][0]['currentStatus'] if ema and 'results' in ema and ema['results'] else "Not approved")
|
296 |
+
with col3:
|
297 |
+
st.markdown("**WHO Essential Medicine**")
|
298 |
+
st.write("Yes" if who else "No")
|
299 |
+
|
300 |
+
# Save the information to a PDF report
|
301 |
+
regulatory_content = f"### Regulatory Report\n\nFDA Status: {fda['openfda']['brand_name'][0] if fda and 'openfda' in fda and 'brand_name' in fda['openfda'] else 'Not Approved'}\n\nEMA Status: {ema['results'][0]['currentStatus'] if ema and 'results' in ema and ema['results'] else 'Not Approved'}\n\nWHO Essential Medicine: {'Yes' if who else 'No'}"
|
302 |
+
report_file = _save_pdf_report(regulatory_content, f"{drug_name}_regulatory_report.pdf")
|
303 |
+
if report_file:
|
304 |
+
with open(report_file, "rb") as file:
|
305 |
+
st.download_button(
|
306 |
+
label="Download Regulatory Report (PDF)",
|
307 |
+
data=file,
|
308 |
+
file_name=f"{drug_name}_regulatory_report.pdf",
|
309 |
+
mime="application/pdf")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|