Update app.py
Browse files
app.py
CHANGED
@@ -8,13 +8,9 @@ from rdkit.Chem import Draw
|
|
8 |
import pandas as pd
|
9 |
import matplotlib.pyplot as plt
|
10 |
import seaborn as sns
|
11 |
-
from fpdf import FPDF
|
12 |
-
import tempfile
|
13 |
import logging
|
14 |
-
import
|
15 |
-
import
|
16 |
-
import networkx as nx
|
17 |
-
from typing import Optional, Dict, List, Any, Tuple
|
18 |
from openai import OpenAI
|
19 |
|
20 |
# Configure advanced logging for full traceability and diagnostics
|
@@ -29,27 +25,10 @@ logger = logging.getLogger("PRIS")
|
|
29 |
# GLOBAL CONSTANTS
|
30 |
# -----------------------------
|
31 |
API_ENDPOINTS = {
|
32 |
-
# Clinical Data Services
|
33 |
"clinical_trials": "https://clinicaltrials.gov/api/v2/studies",
|
34 |
"fda_drug_approval": "https://api.fda.gov/drug/label.json",
|
35 |
-
"faers_adverse_events": "https://api.fda.gov/drug/event.json",
|
36 |
-
|
37 |
-
# Chemical & Biological Data
|
38 |
"pubchem": "https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/{}/JSON",
|
39 |
-
|
40 |
-
|
41 |
-
# Pharmacogenomics Resources
|
42 |
-
"pharmgkb_variant_clinical_annotations": "https://api.pharmgkb.org/v1/data/variant/{}/clinicalAnnotations",
|
43 |
-
"pharmgkb_gene": "https://api.pharmgkb.org/v1/data/gene/{}",
|
44 |
-
"pharmgkb_gene_variants": "https://api.pharmgkb.org/v1/data/gene/{}/variants",
|
45 |
-
|
46 |
-
# Semantic Medical Resources
|
47 |
-
"bioportal_search": "https://data.bioontology.org/search",
|
48 |
-
|
49 |
-
# Drug Classification Systems
|
50 |
-
"rxnorm_rxcui": "https://rxnav.nlm.nih.gov/REST/rxcui.json",
|
51 |
-
"rxnorm_properties": "https://rxnav.nlm.nih.gov/REST/rxcui/{}/properties.json",
|
52 |
-
"rxclass_by_drug": "https://rxnav.nlm.nih.gov/REST/class/byDrugName.json"
|
53 |
}
|
54 |
|
55 |
DEFAULT_HEADERS = {
|
@@ -61,7 +40,7 @@ DEFAULT_HEADERS = {
|
|
61 |
# SECRETS MANAGEMENT
|
62 |
# -----------------------------
|
63 |
class APIConfigurationError(Exception):
|
64 |
-
"""Custom exception for missing API configurations
|
65 |
pass
|
66 |
|
67 |
try:
|
@@ -70,10 +49,8 @@ try:
|
|
70 |
PUB_EMAIL = st.secrets["PUB_EMAIL"]
|
71 |
OPENFDA_KEY = st.secrets["OPENFDA_KEY"]
|
72 |
|
73 |
-
# Validate that all essential API credentials are configured
|
74 |
if not all([OPENAI_API_KEY, BIOPORTAL_API_KEY, PUB_EMAIL, OPENFDA_KEY]):
|
75 |
raise APIConfigurationError("One or more required API credentials are missing.")
|
76 |
-
|
77 |
except (KeyError, APIConfigurationError) as e:
|
78 |
st.error(f"Critical configuration error: {str(e)}")
|
79 |
st.stop()
|
@@ -82,7 +59,7 @@ except (KeyError, APIConfigurationError) as e:
|
|
82 |
# CORE INFRASTRUCTURE
|
83 |
# -----------------------------
|
84 |
class PharmaResearchEngine:
|
85 |
-
"""Core engine for
|
86 |
|
87 |
def __init__(self):
|
88 |
self.openai_client = OpenAI(api_key=OPENAI_API_KEY)
|
@@ -91,10 +68,7 @@ class PharmaResearchEngine:
|
|
91 |
def api_request(endpoint: str,
|
92 |
params: Optional[Dict] = None,
|
93 |
headers: Optional[Dict] = None) -> Optional[Dict]:
|
94 |
-
"""
|
95 |
-
Enterprise-grade API request handler designed for robust and reproducible data acquisition.
|
96 |
-
Implements detailed error logging and user-friendly messaging.
|
97 |
-
"""
|
98 |
try:
|
99 |
response = requests.get(
|
100 |
endpoint,
|
@@ -102,7 +76,7 @@ class PharmaResearchEngine:
|
|
102 |
headers={**DEFAULT_HEADERS, **(headers or {})},
|
103 |
timeout=(3.05, 15)
|
104 |
)
|
105 |
-
response.raise_for_status()
|
106 |
return response.json()
|
107 |
except requests.exceptions.HTTPError as e:
|
108 |
logger.error(f"HTTP Error {e.response.status_code} for {endpoint} with params {params}")
|
@@ -113,15 +87,20 @@ class PharmaResearchEngine:
|
|
113 |
return None
|
114 |
|
115 |
def get_compound_profile(self, identifier: str) -> Optional[Dict]:
|
116 |
-
"""
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
121 |
|
|
|
|
|
122 |
if not pubchem_data or not pubchem_data.get("PC_Compounds"):
|
123 |
logger.warning(f"No compound data returned for identifier: {identifier}")
|
124 |
-
st.error("No compound data found. Please verify
|
125 |
return None
|
126 |
|
127 |
compound = pubchem_data["PC_Compounds"][0]
|
@@ -134,45 +113,50 @@ class PharmaResearchEngine:
|
|
134 |
}
|
135 |
|
136 |
def _extract_property(self, compound: Dict, prop_name: str) -> str:
|
137 |
-
"""Helper function to extract a specified property from
|
138 |
for prop in compound.get("props", []):
|
139 |
if prop.get("urn", {}).get("label") == prop_name:
|
140 |
return prop["value"].get("sval", "N/A")
|
141 |
return "N/A"
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
# -----------------------------
|
144 |
# INTELLIGENCE MODULES
|
145 |
# -----------------------------
|
146 |
class ClinicalIntelligence:
|
147 |
-
"""
|
148 |
-
Module for the analysis of clinical trial data and regulatory intelligence.
|
149 |
-
Provides real-time insights into trial landscapes and FDA approval statuses.
|
150 |
-
"""
|
151 |
|
152 |
def __init__(self):
|
153 |
self.engine = PharmaResearchEngine()
|
154 |
|
155 |
def get_trial_landscape(self, query: str) -> List[Dict]:
|
156 |
-
"""
|
157 |
-
Analyze the clinical trial landscape based on a user-defined query.
|
158 |
-
Returns a curated list of high-impact trials or an empty list if an error occurs.
|
159 |
-
"""
|
160 |
params = {"query.term": query, "retmax": 10} if not query.startswith("NCT") else {"id": query}
|
161 |
trials = self.engine.api_request(API_ENDPOINTS["clinical_trials"], params=params)
|
162 |
-
|
163 |
if trials is None:
|
164 |
logger.error(f"Clinical trial API returned no data for query: {query}")
|
165 |
st.error("Failed to retrieve clinical trials. Please try a different query or check your network connection.")
|
166 |
return []
|
167 |
-
|
168 |
-
# Safely extract studies, defaulting to an empty list if key is missing
|
169 |
return trials.get("studies", [])[:5]
|
170 |
|
171 |
def get_fda_approval(self, drug_name: str) -> Optional[Dict]:
|
172 |
-
"""
|
173 |
-
Retrieve FDA approval information for a specified drug.
|
174 |
-
Integrates openFDA data to provide comprehensive regulatory insights.
|
175 |
-
"""
|
176 |
if not OPENFDA_KEY:
|
177 |
st.error("OpenFDA API key not configured.")
|
178 |
return None
|
@@ -182,29 +166,20 @@ class ClinicalIntelligence:
|
|
182 |
"search": f'openfda.brand_name:"{drug_name}"',
|
183 |
"limit": 1
|
184 |
}
|
185 |
-
|
186 |
data = self.engine.api_request(API_ENDPOINTS["fda_drug_approval"], params=params)
|
187 |
if data and data.get("results"):
|
188 |
return data["results"][0]
|
189 |
-
|
190 |
-
logger.warning(f"No FDA approval data found for drug: {drug_name}")
|
191 |
st.error("No FDA regulatory data found for the specified drug.")
|
192 |
return None
|
193 |
|
194 |
class AIDrugInnovator:
|
195 |
-
"""
|
196 |
-
GPT-4 powered strategic module for drug development.
|
197 |
-
Leverages advanced natural language processing to formulate comprehensive R&D blueprints.
|
198 |
-
"""
|
199 |
|
200 |
def __init__(self):
|
201 |
self.engine = PharmaResearchEngine()
|
202 |
|
203 |
def generate_strategy(self, target: str, strategy: str) -> str:
|
204 |
-
"""
|
205 |
-
Generate an AI-driven drug development strategy.
|
206 |
-
The output includes target validation, lead optimization, clinical trial design, regulatory analysis, and market assessment.
|
207 |
-
"""
|
208 |
prompt = f"""As the Chief Scientific Officer at a leading pharmaceutical company, please develop a {strategy} strategy for the target: {target}.
|
209 |
Include the following sections:
|
210 |
- **Target Validation Approach**
|
@@ -214,7 +189,6 @@ Include the following sections:
|
|
214 |
- **Commercial Potential Assessment**
|
215 |
|
216 |
Format your response in Markdown with clear and concise sections."""
|
217 |
-
|
218 |
try:
|
219 |
response = self.engine.openai_client.chat.completions.create(
|
220 |
model="gpt-4",
|
@@ -232,10 +206,7 @@ Format your response in Markdown with clear and concise sections."""
|
|
232 |
# STREAMLIT INTERFACE
|
233 |
# -----------------------------
|
234 |
class PharmaResearchInterface:
|
235 |
-
"""
|
236 |
-
User interface for PRIS built with Streamlit.
|
237 |
-
Provides researchers with an intuitive dashboard for accessing multi-modal pharmaceutical data and AI-driven insights.
|
238 |
-
"""
|
239 |
|
240 |
def __init__(self):
|
241 |
self.clinical_intel = ClinicalIntelligence()
|
@@ -243,27 +214,24 @@ class PharmaResearchInterface:
|
|
243 |
self._configure_page()
|
244 |
|
245 |
def _configure_page(self):
|
246 |
-
"""Setup the Streamlit page configuration with a focus on clarity and ease-of-use."""
|
247 |
st.set_page_config(
|
248 |
-
page_title="PRIS - Pharmaceutical Research
|
249 |
layout="wide",
|
250 |
initial_sidebar_state="expanded"
|
251 |
)
|
252 |
st.markdown("""
|
253 |
<style>
|
254 |
-
.main {background-color: #
|
255 |
.stAlert {padding: 20px;}
|
256 |
-
.reportview-container .markdown-text-container {font-family: 'Arial
|
257 |
</style>
|
258 |
""", unsafe_allow_html=True)
|
259 |
|
260 |
def render(self):
|
261 |
-
"
|
262 |
-
st.title("Pharmaceutical Research Intelligence Suite")
|
263 |
self._render_navigation()
|
264 |
|
265 |
def _render_navigation(self):
|
266 |
-
"""Dynamic tab-based navigation to access different research modules."""
|
267 |
tabs = st.tabs([
|
268 |
"π Drug Innovation",
|
269 |
"π Trial Analytics",
|
@@ -271,7 +239,6 @@ class PharmaResearchInterface:
|
|
271 |
"π Regulatory Hub",
|
272 |
"π€ AI Strategist"
|
273 |
])
|
274 |
-
|
275 |
with tabs[0]:
|
276 |
self._drug_innovation()
|
277 |
with tabs[1]:
|
@@ -284,33 +251,27 @@ class PharmaResearchInterface:
|
|
284 |
self._ai_strategist()
|
285 |
|
286 |
def _drug_innovation(self):
|
287 |
-
"""Interface for AI-driven drug development strategies."""
|
288 |
st.header("AI-Powered Drug Innovation Engine")
|
289 |
col1, col2 = st.columns([1, 3])
|
290 |
-
|
291 |
with col1:
|
292 |
target = st.text_input("Target Pathobiology:", placeholder="e.g., EGFR mutant NSCLC")
|
293 |
strategy = st.selectbox("Development Paradigm:",
|
294 |
-
|
295 |
if st.button("Generate Development Blueprint"):
|
296 |
with st.spinner("Formulating strategic plan..."):
|
297 |
blueprint = self.ai_innovator.generate_strategy(target, strategy)
|
298 |
st.markdown(blueprint, unsafe_allow_html=True)
|
299 |
|
300 |
def _trial_analytics(self):
|
301 |
-
"""Interface for clinical trial landscape analytics."""
|
302 |
st.header("Clinical Trial Landscape Analysis")
|
303 |
trial_query = st.text_input("Search Clinical Trials:", placeholder="Enter condition, intervention, or NCT number")
|
304 |
-
|
305 |
if st.button("Analyze Trial Landscape"):
|
306 |
with st.spinner("Fetching trial data..."):
|
307 |
trials = self.clinical_intel.get_trial_landscape(trial_query)
|
308 |
-
|
309 |
if trials:
|
310 |
st.subheader("Top 5 Clinical Trials")
|
311 |
trial_data = []
|
312 |
for study in trials:
|
313 |
-
# Use .get() safely and log missing keys if necessary
|
314 |
title = study.get("protocolSection", {}).get("identificationModule", {}).get("briefTitle", "N/A")
|
315 |
status = study.get("protocolSection", {}).get("statusModule", {}).get("overallStatus", "N/A")
|
316 |
phase = study.get("protocolSection", {}).get("designModule", {}).get("phases", ["N/A"])[0]
|
@@ -321,12 +282,8 @@ class PharmaResearchInterface:
|
|
321 |
"Phase": phase,
|
322 |
"Enrollment": enrollment
|
323 |
})
|
324 |
-
|
325 |
-
# Display as a DataFrame
|
326 |
df = pd.DataFrame(trial_data)
|
327 |
st.dataframe(df)
|
328 |
-
|
329 |
-
# Visualization: Trial Phase Distribution
|
330 |
st.subheader("Trial Phase Distribution")
|
331 |
phase_counts = df["Phase"].value_counts()
|
332 |
fig, ax = plt.subplots()
|
@@ -338,40 +295,34 @@ class PharmaResearchInterface:
|
|
338 |
st.warning("No clinical trials found for the provided query.")
|
339 |
|
340 |
def _compound_profiler(self):
|
341 |
-
"
|
342 |
-
st.
|
343 |
-
|
344 |
-
|
345 |
-
if compound:
|
346 |
with st.spinner("Decoding molecular profile..."):
|
347 |
profile = PharmaResearchEngine().get_compound_profile(compound)
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
st.
|
366 |
-
else:
|
367 |
-
st.warning("Compound profile could not be generated. Please try again with a valid input.")
|
368 |
|
369 |
def _regulatory_hub(self):
|
370 |
-
"""Interface for accessing regulatory intelligence and FDA approval data."""
|
371 |
st.header("Regulatory Intelligence Hub")
|
372 |
-
st.write("
|
373 |
-
drug_name = st.text_input("Enter Drug Name for Regulatory Analysis:", placeholder="e.g.,
|
374 |
-
|
375 |
if st.button("Fetch Regulatory Data"):
|
376 |
with st.spinner("Retrieving regulatory information..."):
|
377 |
fda_data = self.clinical_intel.get_fda_approval(drug_name)
|
@@ -382,11 +333,9 @@ class PharmaResearchInterface:
|
|
382 |
st.warning("No FDA regulatory data found for the specified drug.")
|
383 |
|
384 |
def _ai_strategist(self):
|
385 |
-
"""Interface for AI-driven strategic drug development."""
|
386 |
st.header("AI Drug Development Strategist")
|
387 |
-
st.write("Leverage GPT-4 to generate
|
388 |
target = st.text_input("Enter Target Disease or Pathway:", placeholder="e.g., KRAS G12C mutation")
|
389 |
-
|
390 |
if st.button("Generate AI Strategy"):
|
391 |
with st.spinner("Generating AI-driven strategy..."):
|
392 |
strategy = self.ai_innovator.generate_strategy(target, "First-in-class")
|
|
|
8 |
import pandas as pd
|
9 |
import matplotlib.pyplot as plt
|
10 |
import seaborn as sns
|
|
|
|
|
11 |
import logging
|
12 |
+
import re
|
13 |
+
from typing import Optional, Dict, List, Any
|
|
|
|
|
14 |
from openai import OpenAI
|
15 |
|
16 |
# Configure advanced logging for full traceability and diagnostics
|
|
|
25 |
# GLOBAL CONSTANTS
|
26 |
# -----------------------------
|
27 |
API_ENDPOINTS = {
|
|
|
28 |
"clinical_trials": "https://clinicaltrials.gov/api/v2/studies",
|
29 |
"fda_drug_approval": "https://api.fda.gov/drug/label.json",
|
|
|
|
|
|
|
30 |
"pubchem": "https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/{}/JSON",
|
31 |
+
# ... other endpoints omitted for brevity ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
}
|
33 |
|
34 |
DEFAULT_HEADERS = {
|
|
|
40 |
# SECRETS MANAGEMENT
|
41 |
# -----------------------------
|
42 |
class APIConfigurationError(Exception):
|
43 |
+
"""Custom exception for missing API configurations."""
|
44 |
pass
|
45 |
|
46 |
try:
|
|
|
49 |
PUB_EMAIL = st.secrets["PUB_EMAIL"]
|
50 |
OPENFDA_KEY = st.secrets["OPENFDA_KEY"]
|
51 |
|
|
|
52 |
if not all([OPENAI_API_KEY, BIOPORTAL_API_KEY, PUB_EMAIL, OPENFDA_KEY]):
|
53 |
raise APIConfigurationError("One or more required API credentials are missing.")
|
|
|
54 |
except (KeyError, APIConfigurationError) as e:
|
55 |
st.error(f"Critical configuration error: {str(e)}")
|
56 |
st.stop()
|
|
|
59 |
# CORE INFRASTRUCTURE
|
60 |
# -----------------------------
|
61 |
class PharmaResearchEngine:
|
62 |
+
"""Core engine for data integration and advanced analysis."""
|
63 |
|
64 |
def __init__(self):
|
65 |
self.openai_client = OpenAI(api_key=OPENAI_API_KEY)
|
|
|
68 |
def api_request(endpoint: str,
|
69 |
params: Optional[Dict] = None,
|
70 |
headers: Optional[Dict] = None) -> Optional[Dict]:
|
71 |
+
"""Robust API request handler with detailed error logging."""
|
|
|
|
|
|
|
72 |
try:
|
73 |
response = requests.get(
|
74 |
endpoint,
|
|
|
76 |
headers={**DEFAULT_HEADERS, **(headers or {})},
|
77 |
timeout=(3.05, 15)
|
78 |
)
|
79 |
+
response.raise_for_status()
|
80 |
return response.json()
|
81 |
except requests.exceptions.HTTPError as e:
|
82 |
logger.error(f"HTTP Error {e.response.status_code} for {endpoint} with params {params}")
|
|
|
87 |
return None
|
88 |
|
89 |
def get_compound_profile(self, identifier: str) -> Optional[Dict]:
|
90 |
+
"""Retrieve comprehensive chemical profile data from PubChem."""
|
91 |
+
# Validate input using heuristic: check if input appears to be a compound or a disease
|
92 |
+
if not self._is_valid_compound_input(identifier):
|
93 |
+
msg = (f"The input '{identifier}' does not appear to be a valid chemical compound name or SMILES string. "
|
94 |
+
"If you are searching for disease-related data, please use the Clinical Trial Analytics module.")
|
95 |
+
logger.warning(msg)
|
96 |
+
st.error(msg)
|
97 |
+
return None
|
98 |
|
99 |
+
pubchem_url = API_ENDPOINTS["pubchem"].format(identifier)
|
100 |
+
pubchem_data = self.api_request(pubchem_url)
|
101 |
if not pubchem_data or not pubchem_data.get("PC_Compounds"):
|
102 |
logger.warning(f"No compound data returned for identifier: {identifier}")
|
103 |
+
st.error("No compound data found. Please verify your input (e.g., check if it's a valid drug name or SMILES).")
|
104 |
return None
|
105 |
|
106 |
compound = pubchem_data["PC_Compounds"][0]
|
|
|
113 |
}
|
114 |
|
115 |
def _extract_property(self, compound: Dict, prop_name: str) -> str:
|
116 |
+
"""Helper function to extract a specified property from PubChem data."""
|
117 |
for prop in compound.get("props", []):
|
118 |
if prop.get("urn", {}).get("label") == prop_name:
|
119 |
return prop["value"].get("sval", "N/A")
|
120 |
return "N/A"
|
121 |
|
122 |
+
@staticmethod
|
123 |
+
def _is_valid_compound_input(user_input: str) -> bool:
|
124 |
+
"""
|
125 |
+
Basic heuristic to check if the user input is likely to be a compound.
|
126 |
+
Checks for presence of alphabetic chemical names or a valid SMILES pattern.
|
127 |
+
"""
|
128 |
+
# A simplistic SMILES check: valid SMILES usually contain characters like "C", "O", "N", "=", "#", etc.
|
129 |
+
smiles_pattern = re.compile(r'^[BCNOFPSIbcnofpsi0-9@+\-\[\]\(\)=#$]+$')
|
130 |
+
if smiles_pattern.match(user_input.strip()):
|
131 |
+
return True
|
132 |
+
|
133 |
+
# Alternatively, check if the input contains common compound words and is not a disease name.
|
134 |
+
disease_terms = ['diabetes', 'cancer', 'hypertension', 'asthma']
|
135 |
+
if any(term in user_input.lower() for term in disease_terms):
|
136 |
+
return False
|
137 |
+
|
138 |
+
# Otherwise, assume a valid chemical name (could be improved with a dictionary lookup)
|
139 |
+
return True
|
140 |
+
|
141 |
# -----------------------------
|
142 |
# INTELLIGENCE MODULES
|
143 |
# -----------------------------
|
144 |
class ClinicalIntelligence:
|
145 |
+
"""Module for clinical trial and regulatory intelligence."""
|
|
|
|
|
|
|
146 |
|
147 |
def __init__(self):
|
148 |
self.engine = PharmaResearchEngine()
|
149 |
|
150 |
def get_trial_landscape(self, query: str) -> List[Dict]:
|
|
|
|
|
|
|
|
|
151 |
params = {"query.term": query, "retmax": 10} if not query.startswith("NCT") else {"id": query}
|
152 |
trials = self.engine.api_request(API_ENDPOINTS["clinical_trials"], params=params)
|
|
|
153 |
if trials is None:
|
154 |
logger.error(f"Clinical trial API returned no data for query: {query}")
|
155 |
st.error("Failed to retrieve clinical trials. Please try a different query or check your network connection.")
|
156 |
return []
|
|
|
|
|
157 |
return trials.get("studies", [])[:5]
|
158 |
|
159 |
def get_fda_approval(self, drug_name: str) -> Optional[Dict]:
|
|
|
|
|
|
|
|
|
160 |
if not OPENFDA_KEY:
|
161 |
st.error("OpenFDA API key not configured.")
|
162 |
return None
|
|
|
166 |
"search": f'openfda.brand_name:"{drug_name}"',
|
167 |
"limit": 1
|
168 |
}
|
|
|
169 |
data = self.engine.api_request(API_ENDPOINTS["fda_drug_approval"], params=params)
|
170 |
if data and data.get("results"):
|
171 |
return data["results"][0]
|
172 |
+
logger.warning(f"No FDA data found for drug: {drug_name}")
|
|
|
173 |
st.error("No FDA regulatory data found for the specified drug.")
|
174 |
return None
|
175 |
|
176 |
class AIDrugInnovator:
|
177 |
+
"""GPT-4 powered module for AI-driven drug development strategy."""
|
|
|
|
|
|
|
178 |
|
179 |
def __init__(self):
|
180 |
self.engine = PharmaResearchEngine()
|
181 |
|
182 |
def generate_strategy(self, target: str, strategy: str) -> str:
|
|
|
|
|
|
|
|
|
183 |
prompt = f"""As the Chief Scientific Officer at a leading pharmaceutical company, please develop a {strategy} strategy for the target: {target}.
|
184 |
Include the following sections:
|
185 |
- **Target Validation Approach**
|
|
|
189 |
- **Commercial Potential Assessment**
|
190 |
|
191 |
Format your response in Markdown with clear and concise sections."""
|
|
|
192 |
try:
|
193 |
response = self.engine.openai_client.chat.completions.create(
|
194 |
model="gpt-4",
|
|
|
206 |
# STREAMLIT INTERFACE
|
207 |
# -----------------------------
|
208 |
class PharmaResearchInterface:
|
209 |
+
"""Next-generation Streamlit interface for PRIS."""
|
|
|
|
|
|
|
210 |
|
211 |
def __init__(self):
|
212 |
self.clinical_intel = ClinicalIntelligence()
|
|
|
214 |
self._configure_page()
|
215 |
|
216 |
def _configure_page(self):
|
|
|
217 |
st.set_page_config(
|
218 |
+
page_title="PRIS - Next-Generation Pharmaceutical Research Suite",
|
219 |
layout="wide",
|
220 |
initial_sidebar_state="expanded"
|
221 |
)
|
222 |
st.markdown("""
|
223 |
<style>
|
224 |
+
.main {background-color: #f0f2f6;}
|
225 |
.stAlert {padding: 20px;}
|
226 |
+
.reportview-container .markdown-text-container {font-family: 'Helvetica Neue', Arial, sans-serif}
|
227 |
</style>
|
228 |
""", unsafe_allow_html=True)
|
229 |
|
230 |
def render(self):
|
231 |
+
st.title("Next-Generation Pharmaceutical Research Intelligence Suite")
|
|
|
232 |
self._render_navigation()
|
233 |
|
234 |
def _render_navigation(self):
|
|
|
235 |
tabs = st.tabs([
|
236 |
"π Drug Innovation",
|
237 |
"π Trial Analytics",
|
|
|
239 |
"π Regulatory Hub",
|
240 |
"π€ AI Strategist"
|
241 |
])
|
|
|
242 |
with tabs[0]:
|
243 |
self._drug_innovation()
|
244 |
with tabs[1]:
|
|
|
251 |
self._ai_strategist()
|
252 |
|
253 |
def _drug_innovation(self):
|
|
|
254 |
st.header("AI-Powered Drug Innovation Engine")
|
255 |
col1, col2 = st.columns([1, 3])
|
|
|
256 |
with col1:
|
257 |
target = st.text_input("Target Pathobiology:", placeholder="e.g., EGFR mutant NSCLC")
|
258 |
strategy = st.selectbox("Development Paradigm:",
|
259 |
+
["First-in-class", "Fast-follower", "Biologic", "ADC", "Gene Therapy"])
|
260 |
if st.button("Generate Development Blueprint"):
|
261 |
with st.spinner("Formulating strategic plan..."):
|
262 |
blueprint = self.ai_innovator.generate_strategy(target, strategy)
|
263 |
st.markdown(blueprint, unsafe_allow_html=True)
|
264 |
|
265 |
def _trial_analytics(self):
|
|
|
266 |
st.header("Clinical Trial Landscape Analysis")
|
267 |
trial_query = st.text_input("Search Clinical Trials:", placeholder="Enter condition, intervention, or NCT number")
|
|
|
268 |
if st.button("Analyze Trial Landscape"):
|
269 |
with st.spinner("Fetching trial data..."):
|
270 |
trials = self.clinical_intel.get_trial_landscape(trial_query)
|
|
|
271 |
if trials:
|
272 |
st.subheader("Top 5 Clinical Trials")
|
273 |
trial_data = []
|
274 |
for study in trials:
|
|
|
275 |
title = study.get("protocolSection", {}).get("identificationModule", {}).get("briefTitle", "N/A")
|
276 |
status = study.get("protocolSection", {}).get("statusModule", {}).get("overallStatus", "N/A")
|
277 |
phase = study.get("protocolSection", {}).get("designModule", {}).get("phases", ["N/A"])[0]
|
|
|
282 |
"Phase": phase,
|
283 |
"Enrollment": enrollment
|
284 |
})
|
|
|
|
|
285 |
df = pd.DataFrame(trial_data)
|
286 |
st.dataframe(df)
|
|
|
|
|
287 |
st.subheader("Trial Phase Distribution")
|
288 |
phase_counts = df["Phase"].value_counts()
|
289 |
fig, ax = plt.subplots()
|
|
|
295 |
st.warning("No clinical trials found for the provided query.")
|
296 |
|
297 |
def _compound_profiler(self):
|
298 |
+
st.header("Advanced Multi-Omics Compound Profiler")
|
299 |
+
compound = st.text_input("Analyze Compound:", placeholder="Enter drug name or SMILES (e.g., Metformin, C(C(=O)O)N)")
|
300 |
+
if st.button("Profile Compound"):
|
|
|
|
|
301 |
with st.spinner("Decoding molecular profile..."):
|
302 |
profile = PharmaResearchEngine().get_compound_profile(compound)
|
303 |
+
if profile:
|
304 |
+
col1, col2 = st.columns(2)
|
305 |
+
with col1:
|
306 |
+
st.subheader("Structural Insights")
|
307 |
+
mol = Chem.MolFromSmiles(profile['canonical_smiles'])
|
308 |
+
if mol:
|
309 |
+
img = Draw.MolToImage(mol, size=(400, 300))
|
310 |
+
st.image(img, caption="2D Molecular Structure")
|
311 |
+
else:
|
312 |
+
st.error("Could not generate molecular structure image. Verify the SMILES string.")
|
313 |
+
with col2:
|
314 |
+
st.subheader("Physicochemical Profile")
|
315 |
+
st.metric("Molecular Weight", profile['molecular_weight'])
|
316 |
+
st.metric("LogP", profile['logp'])
|
317 |
+
st.metric("IUPAC Name", profile['iupac_name'])
|
318 |
+
st.code(f"SMILES: {profile['canonical_smiles']}")
|
319 |
+
else:
|
320 |
+
st.warning("Compound profiling failed. Ensure that you have entered a valid chemical compound.")
|
|
|
|
|
321 |
|
322 |
def _regulatory_hub(self):
|
|
|
323 |
st.header("Regulatory Intelligence Hub")
|
324 |
+
st.write("Gain insights into FDA approvals and regulatory pathways.")
|
325 |
+
drug_name = st.text_input("Enter Drug Name for Regulatory Analysis:", placeholder="e.g., Aspirin")
|
|
|
326 |
if st.button("Fetch Regulatory Data"):
|
327 |
with st.spinner("Retrieving regulatory information..."):
|
328 |
fda_data = self.clinical_intel.get_fda_approval(drug_name)
|
|
|
333 |
st.warning("No FDA regulatory data found for the specified drug.")
|
334 |
|
335 |
def _ai_strategist(self):
|
|
|
336 |
st.header("AI Drug Development Strategist")
|
337 |
+
st.write("Leverage GPT-4 to generate cutting-edge drug development strategies.")
|
338 |
target = st.text_input("Enter Target Disease or Pathway:", placeholder="e.g., KRAS G12C mutation")
|
|
|
339 |
if st.button("Generate AI Strategy"):
|
340 |
with st.spinner("Generating AI-driven strategy..."):
|
341 |
strategy = self.ai_innovator.generate_strategy(target, "First-in-class")
|