Spaces:
Runtime error
Runtime error
File size: 10,811 Bytes
d58d5be 2f9ea03 08137ac 2f9ea03 08137ac d58d5be 08137ac d58d5be 08137ac d58d5be 08137ac d58d5be 08137ac d58d5be 08137ac d58d5be 08137ac 2f9ea03 08137ac 2f9ea03 08137ac d58d5be 08137ac d58d5be 08137ac 2f9ea03 08137ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import gradio as gr
import torch
from janus.janusflow.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
from diffusers.models import AutoencoderKL
import numpy as np
import spaces # Import spaces for ZeroGPU compatibility
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load model and processor
model_path = "deepseek-ai/JanusFlow-1.3B"
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt = MultiModalityCausalLM.from_pretrained(model_path)
vl_gpt = vl_gpt.to(torch.bfloat16).to(cuda_device).eval()
# remember to use bfloat16 dtype, this vae doesn't work with fp16
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")
vae = vae.to(torch.bfloat16).to(cuda_device).eval()
# Multimodal Understanding function
@torch.inference_mode()
@spaces.GPU(duration=120)
def multimodal_understanding(image, question, seed, top_p, temperature):
# Clear CUDA cache before generating
torch.cuda.empty_cache()
# set seed
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
# Medical image preprocessing (this is a placeholder, implement based on your specific needs)
# NOTE: If input is DICOM or another medical format, add custom loading and preprocessing steps here
# Example: if input is DICOM:
# 1. load with pydicom.dcmread()
# 2. normalize pixel values based on windowing/leveling if necessary
# 3. convert to np.array
# else: if the input is a regular numpy array (e.g. png or jpg) no action is needed, image = image
conversation = [
{
"role": "User",
"content": f"<image_placeholder>\n{question}",
"images": [image],
},
{"role": "Assistant", "content": ""},
]
pil_images = [Image.fromarray(image)]
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False if temperature == 0 else True,
use_cache=True,
temperature=temperature,
top_p=top_p,
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return answer
@torch.inference_mode()
@spaces.GPU(duration=120)
def generate(
input_ids,
cfg_weight: float = 2.0,
num_inference_steps: int = 30
):
# we generate 5 images at a time, *2 for CFG
tokens = torch.stack([input_ids] * 10).cuda()
tokens[5:, 1:] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
print(inputs_embeds.shape)
# we remove the last <bog> token and replace it with t_emb later
inputs_embeds = inputs_embeds[:, :-1, :]
# generate with rectified flow ode
# step 1: encode with vision_gen_enc
z = torch.randn((5, 4, 48, 48), dtype=torch.bfloat16).cuda()
dt = 1.0 / num_inference_steps
dt = torch.zeros_like(z).cuda().to(torch.bfloat16) + dt
# step 2: run ode
attention_mask = torch.ones((10, inputs_embeds.shape[1]+577)).to(vl_gpt.device)
attention_mask[5:, 1:inputs_embeds.shape[1]] = 0
attention_mask = attention_mask.int()
for step in range(num_inference_steps):
# prepare inputs for the llm
z_input = torch.cat([z, z], dim=0) # for cfg
t = step / num_inference_steps * 1000.
t = torch.tensor([t] * z_input.shape[0]).to(dt)
z_enc = vl_gpt.vision_gen_enc_model(z_input, t)
z_emb, t_emb, hs = z_enc[0], z_enc[1], z_enc[2]
z_emb = z_emb.view(z_emb.shape[0], z_emb.shape[1], -1).permute(0, 2, 1)
z_emb = vl_gpt.vision_gen_enc_aligner(z_emb)
llm_emb = torch.cat([inputs_embeds, t_emb.unsqueeze(1), z_emb], dim=1)
# input to the llm
# we apply attention mask for CFG: 1 for tokens that are not masked, 0 for tokens that are masked.
if step == 0:
outputs = vl_gpt.language_model.model(inputs_embeds=llm_emb,
use_cache=True,
attention_mask=attention_mask,
past_key_values=None)
past_key_values = []
for kv_cache in past_key_values:
k, v = kv_cache[0], kv_cache[1]
past_key_values.append((k[:, :, :inputs_embeds.shape[1], :], v[:, :, :inputs_embeds.shape[1], :]))
past_key_values = tuple(past_key_values)
else:
outputs = vl_gpt.language_model.model(inputs_embeds=llm_emb,
use_cache=True,
attention_mask=attention_mask,
past_key_values=past_key_values)
hidden_states = outputs.last_hidden_state
# transform hidden_states back to v
hidden_states = vl_gpt.vision_gen_dec_aligner(vl_gpt.vision_gen_dec_aligner_norm(hidden_states[:, -576:, :]))
hidden_states = hidden_states.reshape(z_emb.shape[0], 24, 24, 768).permute(0, 3, 1, 2)
v = vl_gpt.vision_gen_dec_model(hidden_states, hs, t_emb)
v_cond, v_uncond = torch.chunk(v, 2)
v = cfg_weight * v_cond - (cfg_weight-1.) * v_uncond
z = z + dt * v
# step 3: decode with vision_gen_dec and sdxl vae
decoded_image = vae.decode(z / vae.config.scaling_factor).sample
images = decoded_image.float().clip_(-1., 1.).permute(0,2,3,1).cpu().numpy()
images = ((images+1) / 2. * 255).astype(np.uint8)
return images
def unpack(dec, width, height, parallel_size=5):
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
return visual_img
@torch.inference_mode()
@spaces.GPU(duration=120)
def generate_image(prompt,
seed=None,
guidance=5,
num_inference_steps=30):
# Clear CUDA cache and avoid tracking gradients
torch.cuda.empty_cache()
# Set the seed for reproducible results
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
with torch.no_grad():
messages = [{'role': 'User', 'content': prompt},
{'role': 'Assistant', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt='')
text = text + vl_chat_processor.image_start_tag
input_ids = torch.LongTensor(tokenizer.encode(text))
images = generate(input_ids,
cfg_weight=guidance,
num_inference_steps=num_inference_steps)
return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(images.shape[0])]
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown(value="# Medical Image Analysis and Generation")
# with gr.Row():
with gr.Row():
image_input = gr.Image(label="Medical Image Input")
with gr.Column():
question_input = gr.Textbox(label="Analysis Prompt (e.g., 'Identify tumor', 'Characterize lesion', 'Describe anatomic structures')")
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
understanding_button = gr.Button("Analyze Image")
understanding_output = gr.Textbox(label="Analysis Response")
examples_inpainting = gr.Examples(
label="Multimodal Understanding examples",
examples=[
[
"Identify the tumor in the given image.",
"./ct_scan.png" # Placeholder medical image path
],
[
"Characterize the lesion in the image. Is it malignant or benign?",
"./mri_scan.png", # Placeholder medical image path
],
[
"Generate a report for the given medical image.",
"./xray.png", # Placeholder medical image path
],
],
inputs=[question_input, image_input],
)
gr.Markdown(value="# Medical Image Generation with Hugging Face Logo")
with gr.Row():
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=2, step=0.5, label="CFG Weight")
step_input = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Number of Inference Steps")
prompt_input = gr.Textbox(label="Generation Prompt (e.g., 'Generate a CT scan with the Hugging Face logo', 'Create an MRI scan showing the Hugging Face logo', 'Render a medical x-ray with the Hugging Face logo.')")
seed_input = gr.Number(label="Seed (Optional)", precision=0, value=12345)
generation_button = gr.Button("Generate Images")
image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)
examples_t2i = gr.Examples(
label="Medical image generation examples with Hugging Face logo.",
examples=[
"Generate a CT scan with the Hugging Face logo clearly visible.",
"Create an MRI scan showing the Hugging Face logo embedded within the tissue.",
"Render a medical x-ray with the Hugging Face logo subtly visible in the background.",
"Generate an ultrasound image with a faint Hugging Face logo on the screen",
],
inputs=prompt_input,
)
understanding_button.click(
multimodal_understanding,
inputs=[image_input, question_input, und_seed_input, top_p, temperature],
outputs=understanding_output
)
generation_button.click(
fn=generate_image,
inputs=[prompt_input, seed_input, cfg_weight_input, step_input],
outputs=image_output
)
demo.launch(share=True, ssr_mode = False) |