File size: 12,646 Bytes
2f9ea03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import sys
sys.path.append('./LLAUS')

from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import torch
from llava import LlavaLlamaForCausalLM
from llava.conversation import conv_templates
from llava.utils import disable_torch_init
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria
from PIL import Image
from torch.cuda.amp import autocast
import gradio as gr
import spaces
from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model
import os
from transformers import AutoProcessor, AutoModel
import torch.nn.functional as F

#---------------------------------
#++++++++     Model     ++++++++++
#---------------------------------

DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"

def patch_config(config_path):
    """Applies necessary patches to the model config."""
    patch_dict = {
        "use_mm_proj": True,
        "mm_vision_tower": "openai/clip-vit-large-patch14",
        "mm_hidden_size": 1024
    }
    cfg = AutoConfig.from_pretrained(config_path)
    if not hasattr(cfg, "mm_vision_tower"):
        print(f'`mm_vision_tower` not found in `{config_path}`, applying patch and save to disk.')
        for k, v in patch_dict.items():
            setattr(cfg, k, v)
        cfg.save_pretrained(config_path)

def load_llava_model():
    """Loads and initializes the LLaVA model."""
    model_name = "Baron-GG/LLaVA-Med" # Change this to your model if you uploaded a new one
    disable_torch_init()
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    patch_config(model_name)
    model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).cuda()
    model.model.requires_grad_(False)

    image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)

    model.config.use_cache = False
    model.config.tune_mm_mlp_adapter = False
    model.config.freeze_mm_mlp_adapter = False
    model.config.mm_use_im_start_end = True

    mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
    tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
    if mm_use_im_start_end:
        tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)

    vision_tower = model.model.vision_tower[0]
    vision_tower.to(device='cuda', dtype=torch.float16)
    vision_config = vision_tower.config
    vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
    vision_config.use_im_start_end = mm_use_im_start_end
    if mm_use_im_start_end:
        vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
    image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
    
    model = prepare_model_for_int8_training(model)
    lora_config = LoraConfig(
        r=64,
        lora_alpha=16,
        target_modules=["q_proj", "v_proj","k_proj","o_proj"],
        lora_dropout=0.05,
        bias="none",
        task_type="CAUSAL_LM",
    )
    model = get_peft_model(model, lora_config).cuda()

    model.eval()
    return model, tokenizer, image_processor, image_token_len, mm_use_im_start_end
    
def load_biomedclip_model():
    """Loads the BiomedCLIP model and tokenizer."""
    biomedclip_model_name = 'microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224'
    processor = AutoProcessor.from_pretrained(biomedclip_model_name)
    model = AutoModel.from_pretrained(biomedclip_model_name).cuda().eval()
    return model, processor


class KeywordsStoppingCriteria(StoppingCriteria):
    """Custom stopping criteria for generation."""
    def __init__(self, keywords, tokenizer, input_ids):
        self.keywords = keywords
        self.tokenizer = tokenizer
        self.start_len = None
        self.input_ids = input_ids

    def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        if self.start_len is None:
            self.start_len = self.input_ids.shape[1]
        else:
            outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
            for keyword in self.keywords:
                if keyword in outputs:
                    return True
        return False

def compute_similarity(image, text, biomedclip_model, biomedclip_processor):
    """Computes similarity scores using BiomedCLIP."""
    with torch.no_grad():
        inputs = biomedclip_processor(text=text, images=image, return_tensors="pt", padding=True).to(biomedclip_model.device)
        outputs = biomedclip_model(**inputs)
        image_embeds = outputs.image_embeds
        text_embeds = outputs.text_embeds
    image_embeds = F.normalize(image_embeds, dim=-1)
    text_embeds = F.normalize(text_embeds, dim=-1)
    similarity = (text_embeds @ image_embeds.transpose(-1, -2)).squeeze()
    return similarity

@torch.no_grad()
def eval_llava_model(llava_model, llava_tokenizer, llava_image_processor, image, question, image_token_len, mm_use_im_start_end, max_new_tokens, temperature):
    """Evaluates the LLaVA model for a given image and question."""
    
    image_list = []
    image_tensor = llava_image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]  # 3, 224, 224
    image_list.append(image_tensor)
    image_idx = 1

    if mm_use_im_start_end:
        qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len * image_idx + DEFAULT_IM_END_TOKEN + question
    else:
        qs = DEFAULT_IMAGE_PATCH_TOKEN * image_token_len * image_idx + '\n' + question

    conv = conv_templates["simple"].copy()
    conv.append_message(conv.roles[0], qs)
    prompt = conv.get_prompt()
    inputs = llava_tokenizer([prompt])

    image_tensor = torch.stack(image_list, dim=0).half().cuda()
    input_ids = torch.as_tensor(inputs.input_ids).cuda()

    keywords = ['###']
    stopping_criteria = KeywordsStoppingCriteria(keywords, llava_tokenizer, input_ids)

    with autocast():
        output_ids = llava_model.generate(
            input_ids=input_ids,
            images=image_tensor,
            do_sample=True,
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            stopping_criteria=[stopping_criteria]
        )

    input_token_len = input_ids.shape[1]
    n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
    if n_diff_input_output > 0:
        print(f'[Warning] Sample: {n_diff_input_output} output_ids are not the same as the input_ids')
    outputs = llava_tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]

    while True:
        cur_len = len(outputs)
        outputs = outputs.strip()
        for pattern in ['###', 'Assistant:', 'Response:']:
            if outputs.startswith(pattern):
                outputs = outputs[len(pattern):].strip()
        if len(outputs) == cur_len:
            break

    try:
        index = outputs.index(conv.sep)
    except ValueError:
        outputs += conv.sep
        index = outputs.index(conv.sep)

    outputs = outputs[:index].strip()
    print(outputs)
    return outputs

#---------------------------------
#++++++++     Gradio     ++++++++++
#---------------------------------

SHARED_UI_WARNING = f'''### [NOTE] It is possible that you are waiting in a lengthy queue.
You can duplicate and use it with a paid private GPU.
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/Vision-CAIR/minigpt4?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a>
Alternatively, you can also use the demo on our [project page](https://minigpt-4.github.io).
'''

def gradio_reset(chat_state, img_list):
    """Resets the chat state and image list."""
    if chat_state is not None:
        chat_state.messages = []
    if img_list is not None:
        img_list = []
    return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your medical image first', interactive=False), gr.update(value="Upload & Start Analysis", interactive=True), chat_state, img_list

def upload_img(gr_img, text_input, chat_state):
    """Handles image upload."""
    if gr_img is None:
        return None, None, gr.update(interactive=True), chat_state, None
    img_list = [gr_img]
    return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Analysis", interactive=False), chat_state, img_list


def gradio_ask(user_message, chatbot, chat_state):
    """Handles user input."""
    if not user_message:
        return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
    chatbot = chatbot + [[user_message, None]]
    return '', chatbot, chat_state

@spaces.GPU
def gradio_answer(chatbot, chat_state, img_list, llava_model, llava_tokenizer, llava_image_processor, image_token_len, mm_use_im_start_end, max_new_token, temperature, biomedclip_model, biomedclip_processor):
    """Generates and adds the bot's response to the chatbot using LLaVA"""
    if not img_list:
        return chatbot, chat_state, img_list
        
    # compute similarity using biomedclip
    similarity_score = compute_similarity(img_list[0],chatbot[-1][0], biomedclip_model, biomedclip_processor)
    print(f'Similarity Score is: {similarity_score}')
    
    # prepare the input for LLAVA
    llava_input_text = f"Based on the image and query provided the similarity score is {similarity_score:.3f}. " + chatbot[-1][0]
    llm_message = eval_llava_model(llava_model, llava_tokenizer, llava_image_processor, img_list[0], llava_input_text, image_token_len, mm_use_im_start_end, max_new_token, temperature)
    
    chatbot[-1][1] = llm_message
    return chatbot, chat_state, img_list

title = """<h1 align="center">Medical Image Analysis Tool</h1>"""
description = """<h3>Upload medical images, ask questions, and receive analysis.</h3>"""
examples_list=[
                    ["./case1.png", "Analyze the X-ray for any abnormalities."],
                    ["./case2.jpg", "What type of disease may be present?"],
                    ["./case1.png","What is the anatomical structure shown here?"]
                ]

# Load models and related resources outside of the Gradio block for loading on startup
llava_model, llava_tokenizer, llava_image_processor, image_token_len, mm_use_im_start_end = load_llava_model()
biomedclip_model, biomedclip_processor = load_biomedclip_model()


with gr.Blocks() as demo:
    gr.Markdown(title)
    # gr.Markdown(SHARED_UI_WARNING)
    gr.Markdown(description)

    with gr.Row():
        with gr.Column(scale=0.5):
            image = gr.Image(type="pil", label="Medical Image")
            upload_button = gr.Button(value="Upload & Start Analysis", interactive=True, variant="primary")
            clear = gr.Button("Restart")

            max_new_token = gr.Slider(
                minimum=1,
                maximum=512,
                value=128,
                step=1,
                interactive=True,
                label="Max new tokens"
            )

            temperature = gr.Slider(
                minimum=0.1,
                maximum=2.0,
                value=0.3,
                step=0.1,
                interactive=True,
                label="Temperature",
            )

        with gr.Column():
            chat_state = gr.State()
            img_list = gr.State()
            chatbot = gr.Chatbot(label='Medical Analysis')
            text_input = gr.Textbox(label='Analysis Query', placeholder='Please upload your medical image first', interactive=False)
            gr.Examples(examples=examples_list, inputs=[image, text_input])

    upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list])

    text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
        gradio_answer, [chatbot, chat_state, img_list, llava_model, llava_tokenizer, llava_image_processor, image_token_len, mm_use_im_start_end, max_new_token, temperature, biomedclip_model, biomedclip_processor], [chatbot, chat_state, img_list]
    )
    clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False)


demo.launch()