Spaces:
Runtime error
Runtime error
File size: 12,646 Bytes
2f9ea03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import sys
sys.path.append('./LLAUS')
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import torch
from llava import LlavaLlamaForCausalLM
from llava.conversation import conv_templates
from llava.utils import disable_torch_init
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria
from PIL import Image
from torch.cuda.amp import autocast
import gradio as gr
import spaces
from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model
import os
from transformers import AutoProcessor, AutoModel
import torch.nn.functional as F
#---------------------------------
#++++++++ Model ++++++++++
#---------------------------------
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
def patch_config(config_path):
"""Applies necessary patches to the model config."""
patch_dict = {
"use_mm_proj": True,
"mm_vision_tower": "openai/clip-vit-large-patch14",
"mm_hidden_size": 1024
}
cfg = AutoConfig.from_pretrained(config_path)
if not hasattr(cfg, "mm_vision_tower"):
print(f'`mm_vision_tower` not found in `{config_path}`, applying patch and save to disk.')
for k, v in patch_dict.items():
setattr(cfg, k, v)
cfg.save_pretrained(config_path)
def load_llava_model():
"""Loads and initializes the LLaVA model."""
model_name = "Baron-GG/LLaVA-Med" # Change this to your model if you uploaded a new one
disable_torch_init()
tokenizer = AutoTokenizer.from_pretrained(model_name)
patch_config(model_name)
model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).cuda()
model.model.requires_grad_(False)
image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)
model.config.use_cache = False
model.config.tune_mm_mlp_adapter = False
model.config.freeze_mm_mlp_adapter = False
model.config.mm_use_im_start_end = True
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
vision_tower = model.model.vision_tower[0]
vision_tower.to(device='cuda', dtype=torch.float16)
vision_config = vision_tower.config
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
vision_config.use_im_start_end = mm_use_im_start_end
if mm_use_im_start_end:
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
model = prepare_model_for_int8_training(model)
lora_config = LoraConfig(
r=64,
lora_alpha=16,
target_modules=["q_proj", "v_proj","k_proj","o_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config).cuda()
model.eval()
return model, tokenizer, image_processor, image_token_len, mm_use_im_start_end
def load_biomedclip_model():
"""Loads the BiomedCLIP model and tokenizer."""
biomedclip_model_name = 'microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224'
processor = AutoProcessor.from_pretrained(biomedclip_model_name)
model = AutoModel.from_pretrained(biomedclip_model_name).cuda().eval()
return model, processor
class KeywordsStoppingCriteria(StoppingCriteria):
"""Custom stopping criteria for generation."""
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.tokenizer = tokenizer
self.start_len = None
self.input_ids = input_ids
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
if self.start_len is None:
self.start_len = self.input_ids.shape[1]
else:
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False
def compute_similarity(image, text, biomedclip_model, biomedclip_processor):
"""Computes similarity scores using BiomedCLIP."""
with torch.no_grad():
inputs = biomedclip_processor(text=text, images=image, return_tensors="pt", padding=True).to(biomedclip_model.device)
outputs = biomedclip_model(**inputs)
image_embeds = outputs.image_embeds
text_embeds = outputs.text_embeds
image_embeds = F.normalize(image_embeds, dim=-1)
text_embeds = F.normalize(text_embeds, dim=-1)
similarity = (text_embeds @ image_embeds.transpose(-1, -2)).squeeze()
return similarity
@torch.no_grad()
def eval_llava_model(llava_model, llava_tokenizer, llava_image_processor, image, question, image_token_len, mm_use_im_start_end, max_new_tokens, temperature):
"""Evaluates the LLaVA model for a given image and question."""
image_list = []
image_tensor = llava_image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] # 3, 224, 224
image_list.append(image_tensor)
image_idx = 1
if mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len * image_idx + DEFAULT_IM_END_TOKEN + question
else:
qs = DEFAULT_IMAGE_PATCH_TOKEN * image_token_len * image_idx + '\n' + question
conv = conv_templates["simple"].copy()
conv.append_message(conv.roles[0], qs)
prompt = conv.get_prompt()
inputs = llava_tokenizer([prompt])
image_tensor = torch.stack(image_list, dim=0).half().cuda()
input_ids = torch.as_tensor(inputs.input_ids).cuda()
keywords = ['###']
stopping_criteria = KeywordsStoppingCriteria(keywords, llava_tokenizer, input_ids)
with autocast():
output_ids = llava_model.generate(
input_ids=input_ids,
images=image_tensor,
do_sample=True,
temperature=temperature,
max_new_tokens=max_new_tokens,
stopping_criteria=[stopping_criteria]
)
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] Sample: {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = llava_tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
while True:
cur_len = len(outputs)
outputs = outputs.strip()
for pattern in ['###', 'Assistant:', 'Response:']:
if outputs.startswith(pattern):
outputs = outputs[len(pattern):].strip()
if len(outputs) == cur_len:
break
try:
index = outputs.index(conv.sep)
except ValueError:
outputs += conv.sep
index = outputs.index(conv.sep)
outputs = outputs[:index].strip()
print(outputs)
return outputs
#---------------------------------
#++++++++ Gradio ++++++++++
#---------------------------------
SHARED_UI_WARNING = f'''### [NOTE] It is possible that you are waiting in a lengthy queue.
You can duplicate and use it with a paid private GPU.
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/Vision-CAIR/minigpt4?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a>
Alternatively, you can also use the demo on our [project page](https://minigpt-4.github.io).
'''
def gradio_reset(chat_state, img_list):
"""Resets the chat state and image list."""
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your medical image first', interactive=False), gr.update(value="Upload & Start Analysis", interactive=True), chat_state, img_list
def upload_img(gr_img, text_input, chat_state):
"""Handles image upload."""
if gr_img is None:
return None, None, gr.update(interactive=True), chat_state, None
img_list = [gr_img]
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Analysis", interactive=False), chat_state, img_list
def gradio_ask(user_message, chatbot, chat_state):
"""Handles user input."""
if not user_message:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
@spaces.GPU
def gradio_answer(chatbot, chat_state, img_list, llava_model, llava_tokenizer, llava_image_processor, image_token_len, mm_use_im_start_end, max_new_token, temperature, biomedclip_model, biomedclip_processor):
"""Generates and adds the bot's response to the chatbot using LLaVA"""
if not img_list:
return chatbot, chat_state, img_list
# compute similarity using biomedclip
similarity_score = compute_similarity(img_list[0],chatbot[-1][0], biomedclip_model, biomedclip_processor)
print(f'Similarity Score is: {similarity_score}')
# prepare the input for LLAVA
llava_input_text = f"Based on the image and query provided the similarity score is {similarity_score:.3f}. " + chatbot[-1][0]
llm_message = eval_llava_model(llava_model, llava_tokenizer, llava_image_processor, img_list[0], llava_input_text, image_token_len, mm_use_im_start_end, max_new_token, temperature)
chatbot[-1][1] = llm_message
return chatbot, chat_state, img_list
title = """<h1 align="center">Medical Image Analysis Tool</h1>"""
description = """<h3>Upload medical images, ask questions, and receive analysis.</h3>"""
examples_list=[
["./case1.png", "Analyze the X-ray for any abnormalities."],
["./case2.jpg", "What type of disease may be present?"],
["./case1.png","What is the anatomical structure shown here?"]
]
# Load models and related resources outside of the Gradio block for loading on startup
llava_model, llava_tokenizer, llava_image_processor, image_token_len, mm_use_im_start_end = load_llava_model()
biomedclip_model, biomedclip_processor = load_biomedclip_model()
with gr.Blocks() as demo:
gr.Markdown(title)
# gr.Markdown(SHARED_UI_WARNING)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil", label="Medical Image")
upload_button = gr.Button(value="Upload & Start Analysis", interactive=True, variant="primary")
clear = gr.Button("Restart")
max_new_token = gr.Slider(
minimum=1,
maximum=512,
value=128,
step=1,
interactive=True,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.3,
step=0.1,
interactive=True,
label="Temperature",
)
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(label='Medical Analysis')
text_input = gr.Textbox(label='Analysis Query', placeholder='Please upload your medical image first', interactive=False)
gr.Examples(examples=examples_list, inputs=[image, text_input])
upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, llava_model, llava_tokenizer, llava_image_processor, image_token_len, mm_use_im_start_end, max_new_token, temperature, biomedclip_model, biomedclip_processor], [chatbot, chat_state, img_list]
)
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False)
demo.launch() |