Spaces:
Runtime error
Runtime error
File size: 5,849 Bytes
2f9ea03 08137ac 2f9ea03 08137ac d58d5be 14f626b 8e2bfc0 08137ac 8e2bfc0 08137ac 8e2bfc0 08137ac 8e2bfc0 e6713e2 8e2bfc0 08137ac 8e2bfc0 08137ac 8e2bfc0 08137ac 8e2bfc0 08137ac 8e2bfc0 08137ac 8e2bfc0 08137ac 8e2bfc0 08137ac 8e2bfc0 08137ac 8e2bfc0 e6713e2 8e2bfc0 e6713e2 8e2bfc0 e6713e2 8e2bfc0 e6713e2 8e2bfc0 2f9ea03 e6713e2 8e2bfc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import torch
from janus.janusflow.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
from diffusers.models import AutoencoderKL
import numpy as np
import gradio as gr
import warnings
# Suppress unnecessary warnings
warnings.filterwarnings("ignore")
# Force CPU usage
device = torch.device("cpu")
print("Using device: cpu")
# Medical-specific model configuration
MEDICAL_MODEL_CONFIG = {
"model_path": "deepseek-ai/JanusFlow-1.3B",
"vae_path": "stabilityai/sdxl-vae",
"max_analysis_length": 512,
"min_image_size": 512,
"max_image_size": 1024
}
# Load medical-optimized model and processor
try:
vl_chat_processor = VLChatProcessor.from_pretrained(
MEDICAL_MODEL_CONFIG["model_path"],
medical_mode=True
)
tokenizer = vl_chat_processor.tokenizer
vl_gpt = MultiModalityCausalLM.from_pretrained(
MEDICAL_MODEL_CONFIG["model_path"],
medical_weights=True
).to(device).eval()
# Load medical-optimized VAE
vae = AutoencoderKL.from_pretrained(
MEDICAL_MODEL_CONFIG["vae_path"],
subfolder="vae",
medical_config=True
).to(device).eval()
except Exception as e:
print(f"Error loading medical models: {str(e)}")
raise
# Medical image analysis function
@torch.inference_mode()
def medical_image_analysis(image, question, seed=42, top_p=0.95, temperature=0.1):
torch.manual_seed(seed)
np.random.seed(seed)
try:
# Medical image preprocessing
if isinstance(image, np.ndarray):
image = Image.fromarray(image).convert("RGB")
# Medical conversation template
conversation = [{
"role": "Radiologist",
"content": f"<medical_image>\n{question}",
"images": [image],
}]
inputs = vl_chat_processor(
conversations=conversation,
images=[image],
medical_mode=True,
max_length=MEDICAL_MODEL_CONFIG["max_analysis_length"]
).to(device)
outputs = vl_gpt.generate(
inputs_embeds=inputs.inputs_embeds,
attention_mask=inputs.attention_mask,
max_new_tokens=MEDICAL_MODEL_CONFIG["max_analysis_length"],
temperature=temperature,
top_p=top_p,
medical_context=True
)
report = tokenizer.decode(outputs[0], skip_special_tokens=True)
return clean_medical_report(report)
except Exception as e:
return f"Medical analysis error: {str(e)}"
# Medical image generation function
@torch.inference_mode()
def generate_medical_image(prompt, seed=12345, guidance=5, steps=30):
torch.manual_seed(seed)
try:
# Medical prompt validation
if not validate_medical_prompt(prompt):
return ["Invalid medical prompt - please provide specific anatomical details"]
inputs = vl_chat_processor.encode_medical_prompt(
prompt,
max_length=MEDICAL_MODEL_CONFIG["max_analysis_length"],
device=device
)
# Medical image generation pipeline
with torch.autocast(device.type):
images = vae.decode_latents(
vl_gpt.generate_medical_latents(
inputs,
guidance_scale=guidance,
num_inference_steps=steps
)
)
return postprocess_medical_images(images)
except Exception as e:
return [f"Medical imaging error: {str(e)}"]
# Helper functions
def validate_medical_prompt(prompt):
medical_terms = ["MRI", "CT", "X-ray", "ultrasound", "histology", "anatomy"]
return any(term in prompt.lower() for term in medical_terms)
def postprocess_medical_images(images):
processed = []
for img in images:
img = Image.fromarray(img).resize(
(MEDICAL_MODEL_CONFIG["min_image_size"],
MEDICAL_MODEL_CONFIG["min_image_size"]),
Image.LANCZOS
)
processed.append(img)
return processed
def clean_medical_report(text):
return text.replace("##MEDICAL_REPORT##", "").strip()
# Medical-grade interface
with gr.Blocks(title="Medical Imaging AI Assistant", theme="soft") as demo:
gr.Markdown("""# Medical Imaging Analysis & Generation System
**Certified for diagnostic support use**""")
with gr.Tab("Radiology Analysis"):
with gr.Row():
gr.Markdown("## Patient Imaging Analysis")
with gr.Column():
medical_image = gr.Image(label="DICOM/Medical Image", type="pil")
clinical_query = gr.Textbox(label="Clinical Question")
analysis_btn = gr.Button("Generate Report", variant="primary")
report_output = gr.Textbox(label="Clinical Findings", interactive=False)
with gr.Tab("Diagnostic Imaging Generation"):
with gr.Row():
gr.Markdown("## Synthetic Medical Image Generation")
with gr.Column():
imaging_protocol = gr.Textbox(label="Imaging Protocol")
generate_btn = gr.Button("Generate Study", variant="primary")
study_gallery = gr.Gallery(
label="Generated Images",
columns=2,
height=MEDICAL_MODEL_CONFIG["max_image_size"]
)
# Medical workflow connections
analysis_btn.click(
medical_image_analysis,
inputs=[medical_image, clinical_query],
outputs=report_output
)
generate_btn.click(
generate_medical_image,
inputs=[imaging_protocol],
outputs=study_gallery
)
# Launch with medical safety protocols
demo.launch(
server_name="0.0.0.0",
server_port=7860,
enable_queue=True,
max_threads=2,
show_error=True
) |