Spaces:
Runtime error
Runtime error
File size: 5,214 Bytes
2f9ea03 a85b9e3 2f9ea03 a85b9e3 2f9ea03 a85b9e3 2f9ea03 a85b9e3 2f9ea03 a85b9e3 2f9ea03 a85b9e3 2f9ea03 a85b9e3 2f9ea03 a85b9e3 2f9ea03 a85b9e3 2f9ea03 a85b9e3 2f9ea03 a85b9e3 2f9ea03 a85b9e3 2f9ea03 a85b9e3 2f9ea03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoProcessor, AutoModel
import torch.nn.functional as F
#---------------------------------
#++++++++ Model ++++++++++
#---------------------------------
def load_biomedclip_model():
"""Loads the BiomedCLIP model and tokenizer."""
biomedclip_model_name = 'microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224'
processor = AutoProcessor.from_pretrained(biomedclip_model_name)
model = AutoModel.from_pretrained(biomedclip_model_name).cuda().eval()
return model, processor
def compute_similarity(image, text, biomedclip_model, biomedclip_processor):
"""Computes similarity scores using BiomedCLIP."""
with torch.no_grad():
inputs = biomedclip_processor(text=text, images=image, return_tensors="pt", padding=True).to(biomedclip_model.device)
outputs = biomedclip_model(**inputs)
image_embeds = outputs.image_embeds
text_embeds = outputs.text_embeds
image_embeds = F.normalize(image_embeds, dim=-1)
text_embeds = F.normalize(text_embeds, dim=-1)
similarity = (text_embeds @ image_embeds.transpose(-1, -2)).squeeze()
return similarity
#---------------------------------
#++++++++ Gradio ++++++++++
#---------------------------------
def gradio_reset(chat_state, img_list, similarity_output):
"""Resets the chat state and image list."""
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your medical image first', interactive=False), gr.update(value="Upload & Start Analysis", interactive=True), chat_state, img_list, gr.update(value="", visible=False)
def upload_img(gr_img, text_input, chat_state, similarity_output):
"""Handles image upload."""
if gr_img is None:
return None, None, gr.update(interactive=True), chat_state, None, gr.update(visible=False)
img_list = [gr_img]
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Analysis", interactive=False), chat_state, img_list, gr.update(visible=True)
def gradio_ask(user_message, chatbot, chat_state):
"""Handles user input."""
if not user_message:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
@spaces.GPU
def gradio_answer(chatbot, chat_state, img_list, biomedclip_model, biomedclip_processor, similarity_output):
"""Computes and displays similarity scores."""
if not img_list:
return chatbot, chat_state, img_list, similarity_output
similarity_score = compute_similarity(img_list[0], chatbot[-1][0], biomedclip_model, biomedclip_processor)
print(f'Similarity Score is: {similarity_score}')
similarity_text = f"Similarity Score: {similarity_score:.3f}"
chatbot[-1][1] = similarity_text
return chatbot, chat_state, img_list, gr.update(value=similarity_text, visible=True)
title = """<h1 align="center">Medical Image Analysis Tool</h1>"""
description = """<h3>Upload medical images, ask questions, and receive a similarity score.</h3>"""
examples_list=[
["./case1.png", "Analyze the X-ray for any abnormalities."],
["./case2.jpg", "What type of disease may be present?"],
["./case1.png","What is the anatomical structure shown here?"]
]
# Load models and related resources outside of the Gradio block for loading on startup
biomedclip_model, biomedclip_processor = load_biomedclip_model()
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil", label="Medical Image")
upload_button = gr.Button(value="Upload & Start Analysis", interactive=True, variant="primary")
clear = gr.Button("Restart")
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(label='Medical Analysis')
text_input = gr.Textbox(label='Analysis Query', placeholder='Please upload your medical image first', interactive=False)
similarity_output = gr.Textbox(label="Similarity Score", visible=False, interactive=False)
gr.Examples(examples=examples_list, inputs=[image, text_input])
upload_button.click(upload_img, [image, text_input, chat_state, similarity_output], [image, text_input, upload_button, chat_state, img_list, similarity_output])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, biomedclip_model, biomedclip_processor, similarity_output], [chatbot, chat_state, img_list, similarity_output]
)
clear.click(gradio_reset, [chat_state, img_list, similarity_output], [chatbot, image, text_input, upload_button, chat_state, img_list, similarity_output], queue=False)
demo.launch() |