Spaces:
Runtime error
Runtime error
File size: 10,124 Bytes
2f9ea03 08137ac 2f9ea03 08137ac d58d5be e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac d58d5be e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac e6713e2 08137ac d58d5be e6713e2 08137ac 2f9ea03 e6713e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import torch
from janus.janusflow.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
from diffusers.models import AutoencoderKL
import numpy as np
import gradio as gr # Import gradio for UI
# CUDA availability check
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {cuda_device}")
# Load model and processor (adjust path if needed)
model_path = "deepseek-ai/JanusFlow-1.3B" # You may need to change to your local path
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt = MultiModalityCausalLM.from_pretrained(model_path)
vl_gpt = vl_gpt.to(torch.bfloat16).to(cuda_device).eval()
# Load VAE for image generation
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae") # You may need to change to your local path
vae = vae.to(torch.bfloat16).to(cuda_device).eval()
# Multimodal Understanding function (modified for medical context)
@torch.inference_mode()
def multimodal_understanding(image, question, seed, top_p, temperature):
# Clear CUDA cache before generating to prevent memory leaks
torch.cuda.empty_cache()
# Set seed for reproducibility
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
conversation = [
{
"role": "User",
"content": f"<image_placeholder>\n{question}",
"images": [image],
},
{"role": "Assistant", "content": ""},
]
pil_images = [Image.fromarray(image)]
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False if temperature == 0 else True,
use_cache=True,
temperature=temperature,
top_p=top_p,
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return answer
# Image Generation Function (modified for medical context)
@torch.inference_mode()
def generate(
input_ids,
cfg_weight: float = 2.0,
num_inference_steps: int = 30
):
# we generate 5 images at a time, *2 for CFG
tokens = torch.stack([input_ids] * 10).cuda()
tokens[5:, 1:] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
print(inputs_embeds.shape)
# we remove the last <bog> token and replace it with t_emb later
inputs_embeds = inputs_embeds[:, :-1, :]
# generate with rectified flow ode
# step 1: encode with vision_gen_enc
z = torch.randn((5, 4, 48, 48), dtype=torch.bfloat16).cuda()
dt = 1.0 / num_inference_steps
dt = torch.zeros_like(z).cuda().to(torch.bfloat16) + dt
# step 2: run ode
attention_mask = torch.ones((10, inputs_embeds.shape[1]+577)).to(vl_gpt.device)
attention_mask[5:, 1:inputs_embeds.shape[1]] = 0
attention_mask = attention_mask.int()
for step in range(num_inference_steps):
# prepare inputs for the llm
z_input = torch.cat([z, z], dim=0) # for cfg
t = step / num_inference_steps * 1000.
t = torch.tensor([t] * z_input.shape[0]).to(dt)
z_enc = vl_gpt.vision_gen_enc_model(z_input, t)
z_emb, t_emb, hs = z_enc[0], z_enc[1], z_enc[2]
z_emb = z_emb.view(z_emb.shape[0], z_emb.shape[1], -1).permute(0, 2, 1)
z_emb = vl_gpt.vision_gen_enc_aligner(z_emb)
llm_emb = torch.cat([inputs_embeds, t_emb.unsqueeze(1), z_emb], dim=1)
# input to the llm
# we apply attention mask for CFG: 1 for tokens that are not masked, 0 for tokens that are masked.
if step == 0:
outputs = vl_gpt.language_model.model(inputs_embeds=llm_emb,
use_cache=True,
attention_mask=attention_mask,
past_key_values=None)
past_key_values = []
for kv_cache in past_key_values:
k, v = kv_cache[0], kv_cache[1]
past_key_values.append((k[:, :, :inputs_embeds.shape[1], :], v[:, :, :inputs_embeds.shape[1], :]))
past_key_values = tuple(past_key_values)
else:
outputs = vl_gpt.language_model.model(inputs_embeds=llm_emb,
use_cache=True,
attention_mask=attention_mask,
past_key_values=past_key_values)
hidden_states = outputs.last_hidden_state
# transform hidden_states back to v
hidden_states = vl_gpt.vision_gen_dec_aligner(vl_gpt.vision_gen_dec_aligner_norm(hidden_states[:, -576:, :]))
hidden_states = hidden_states.reshape(z_emb.shape[0], 24, 24, 768).permute(0, 3, 1, 2)
v = vl_gpt.vision_gen_dec_model(hidden_states, hs, t_emb)
v_cond, v_uncond = torch.chunk(v, 2)
v = cfg_weight * v_cond - (cfg_weight-1.) * v_uncond
z = z + dt * v
# step 3: decode with vision_gen_dec and sdxl vae
decoded_image = vae.decode(z / vae.config.scaling_factor).sample
images = decoded_image.float().clip_(-1., 1.).permute(0,2,3,1).cpu().numpy()
images = ((images+1) / 2. * 255).astype(np.uint8)
return images
def unpack(dec, width, height, parallel_size=5):
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
return visual_img
# Main image generation function
@torch.inference_mode()
def generate_image(prompt,
seed=None,
guidance=5,
num_inference_steps=30):
# Clear CUDA cache and avoid tracking gradients
torch.cuda.empty_cache()
# Set the seed for reproducible results
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
with torch.no_grad():
messages = [{'role': 'User', 'content': prompt},
{'role': 'Assistant', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt='')
text = text + vl_chat_processor.image_start_tag
input_ids = torch.LongTensor(tokenizer.encode(text))
images = generate(input_ids,
cfg_weight=guidance,
num_inference_steps=num_inference_steps)
return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(images.shape[0])]
# Gradio interface
with gr.Blocks(title="JanusFlow Medical Image Assistant") as demo:
gr.Markdown(value="# Medical Image Understanding and Generation")
with gr.Tab("Multimodal Understanding"):
with gr.Row():
image_input = gr.Image(label="Medical Image Input")
with gr.Column():
question_input = gr.Textbox(label="Medical Question")
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="Top P")
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="Temperature")
understanding_button = gr.Button("Analyze Image")
understanding_output = gr.Textbox(label="Analysis Response")
examples_understanding = gr.Examples(
label="Examples: Image Analysis",
examples=[
[
"What are the visible structures in this ultrasound?",
"./ultrasound.jpeg"
],
[
"Identify abnormalities in the image.",
"./cardiac_ultrasound.jpeg"
],
[
"Describe the features and histological analysis in this image.",
"./histology.jpeg"
],
],
inputs=[question_input, image_input],
)
with gr.Tab("Text-to-Image Generation"):
with gr.Row():
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=2, step=0.5, label="CFG Weight")
step_input = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Inference Steps")
prompt_input = gr.Textbox(label="Medical Image Generation Prompt")
seed_input = gr.Number(label="Seed (Optional)", precision=0, value=12345)
generation_button = gr.Button("Generate Medical Image")
image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)
examples_t2i = gr.Examples(
label="Examples: Image Generation",
examples=[
"Generate a coronal view of a brain MRI with a tumor.",
"Create an X-ray image showing a fractured femur.",
"Create an image of Histology of Liver Cirrhosis.",
],
inputs=prompt_input,
)
understanding_button.click(
multimodal_understanding,
inputs=[image_input, question_input, und_seed_input, top_p, temperature],
outputs=understanding_output
)
generation_button.click(
fn=generate_image,
inputs=[prompt_input, seed_input, cfg_weight_input, step_input],
outputs=image_output
)
demo.launch(share=True) |