Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,23 +5,23 @@ from diffusers import AutoencoderKL
|
|
5 |
import numpy as np
|
6 |
import gradio as gr
|
7 |
|
8 |
-
# Configure device
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
|
|
|
11 |
|
12 |
# Initialize medical imaging components
|
13 |
def load_medical_models():
|
14 |
try:
|
15 |
-
# Load processor and tokenizer
|
16 |
processor = VLChatProcessor.from_pretrained("deepseek-ai/Janus-1.3B")
|
17 |
|
18 |
-
# Load base model
|
19 |
model = MultiModalityCausalLM.from_pretrained(
|
20 |
"deepseek-ai/Janus-1.3B",
|
21 |
-
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
|
|
|
|
|
22 |
).to(device).eval()
|
23 |
|
24 |
-
# Load VAE for image processing
|
25 |
vae = AutoencoderKL.from_pretrained(
|
26 |
"stabilityai/sdxl-vae",
|
27 |
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
|
@@ -29,62 +29,61 @@ def load_medical_models():
|
|
29 |
|
30 |
return processor, model, vae
|
31 |
except Exception as e:
|
32 |
-
print(f"Error loading models: {str(e)}")
|
33 |
raise
|
34 |
|
35 |
processor, model, vae = load_medical_models()
|
36 |
|
37 |
-
# Medical image analysis function
|
38 |
-
def medical_analysis(image, question, seed=42
|
39 |
try:
|
40 |
-
# Set random seed for reproducibility
|
41 |
torch.manual_seed(seed)
|
42 |
np.random.seed(seed)
|
43 |
|
44 |
-
# Prepare inputs
|
45 |
if isinstance(image, np.ndarray):
|
46 |
image = Image.fromarray(image).convert("RGB")
|
47 |
|
48 |
inputs = processor(
|
49 |
-
text=question,
|
50 |
images=[image],
|
51 |
return_tensors="pt"
|
52 |
).to(device)
|
53 |
|
54 |
-
# Generate analysis
|
55 |
outputs = model.generate(
|
56 |
inputs.input_ids,
|
57 |
attention_mask=inputs.attention_mask,
|
58 |
max_new_tokens=512,
|
59 |
-
temperature=
|
60 |
-
top_p=
|
|
|
61 |
)
|
62 |
|
63 |
return processor.decode(outputs[0], skip_special_tokens=True)
|
64 |
except Exception as e:
|
65 |
-
return f"
|
66 |
|
67 |
# Medical interface
|
68 |
-
with gr.Blocks(title="Medical Imaging Assistant") as demo:
|
69 |
-
gr.Markdown("#
|
|
|
70 |
|
71 |
-
with gr.Tab("
|
72 |
with gr.Row():
|
73 |
-
med_image = gr.Image(label="
|
74 |
-
med_question = gr.Textbox(label="Clinical Query"
|
75 |
-
|
76 |
-
gr.
|
77 |
-
|
78 |
-
["ultrasound_sample.jpg", "Identify any abnormalities in this ultrasound"],
|
79 |
-
["xray_sample.jpg", "Describe the bone structure visible in this X-ray"]
|
80 |
-
],
|
81 |
-
inputs=[med_image, med_question]
|
82 |
-
)
|
83 |
|
84 |
med_question.submit(
|
85 |
medical_analysis,
|
86 |
inputs=[med_image, med_question],
|
87 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
88 |
)
|
89 |
|
90 |
-
demo.launch()
|
|
|
5 |
import numpy as np
|
6 |
import gradio as gr
|
7 |
|
8 |
+
# Configure device and attention implementation
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
attn_implementation = "flash_attention_2" if device == "cuda" else "eager"
|
11 |
+
print(f"Using device: {device} with {attn_implementation}")
|
12 |
|
13 |
# Initialize medical imaging components
|
14 |
def load_medical_models():
|
15 |
try:
|
|
|
16 |
processor = VLChatProcessor.from_pretrained("deepseek-ai/Janus-1.3B")
|
17 |
|
|
|
18 |
model = MultiModalityCausalLM.from_pretrained(
|
19 |
"deepseek-ai/Janus-1.3B",
|
20 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
|
21 |
+
attn_implementation=attn_implementation,
|
22 |
+
use_flash_attention_2=(attn_implementation == "flash_attention_2")
|
23 |
).to(device).eval()
|
24 |
|
|
|
25 |
vae = AutoencoderKL.from_pretrained(
|
26 |
"stabilityai/sdxl-vae",
|
27 |
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
|
|
|
29 |
|
30 |
return processor, model, vae
|
31 |
except Exception as e:
|
32 |
+
print(f"Error loading medical models: {str(e)}")
|
33 |
raise
|
34 |
|
35 |
processor, model, vae = load_medical_models()
|
36 |
|
37 |
+
# Medical image analysis function with attention control
|
38 |
+
def medical_analysis(image, question, seed=42):
|
39 |
try:
|
|
|
40 |
torch.manual_seed(seed)
|
41 |
np.random.seed(seed)
|
42 |
|
|
|
43 |
if isinstance(image, np.ndarray):
|
44 |
image = Image.fromarray(image).convert("RGB")
|
45 |
|
46 |
inputs = processor(
|
47 |
+
text=f"<medical_query>{question}</medical_query>",
|
48 |
images=[image],
|
49 |
return_tensors="pt"
|
50 |
).to(device)
|
51 |
|
|
|
52 |
outputs = model.generate(
|
53 |
inputs.input_ids,
|
54 |
attention_mask=inputs.attention_mask,
|
55 |
max_new_tokens=512,
|
56 |
+
temperature=0.1,
|
57 |
+
top_p=0.95,
|
58 |
+
pad_token_id=processor.tokenizer.eos_token_id
|
59 |
)
|
60 |
|
61 |
return processor.decode(outputs[0], skip_special_tokens=True)
|
62 |
except Exception as e:
|
63 |
+
return f"Radiology analysis error: {str(e)}"
|
64 |
|
65 |
# Medical interface
|
66 |
+
with gr.Blocks(title="Medical Imaging Assistant", theme=gr.themes.Soft()) as demo:
|
67 |
+
gr.Markdown("""# AI Radiology Assistant
|
68 |
+
**CT/MRI/X-ray Analysis System**""")
|
69 |
|
70 |
+
with gr.Tab("Diagnostic Imaging"):
|
71 |
with gr.Row():
|
72 |
+
med_image = gr.Image(label="DICOM Image", type="pil")
|
73 |
+
med_question = gr.Textbox(label="Clinical Query",
|
74 |
+
placeholder="Describe findings in this CT scan...")
|
75 |
+
analysis_btn = gr.Button("Analyze", variant="primary")
|
76 |
+
report_output = gr.Textbox(label="Radiology Report", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
med_question.submit(
|
79 |
medical_analysis,
|
80 |
inputs=[med_image, med_question],
|
81 |
+
outputs=report_output
|
82 |
+
)
|
83 |
+
analysis_btn.click(
|
84 |
+
medical_analysis,
|
85 |
+
inputs=[med_image, med_question],
|
86 |
+
outputs=report_output
|
87 |
)
|
88 |
|
89 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|