Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,187 +1,90 @@
|
|
1 |
import torch
|
2 |
-
from janus.
|
3 |
from PIL import Image
|
4 |
-
from diffusers
|
5 |
import numpy as np
|
6 |
import gradio as gr
|
7 |
-
import warnings
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
MEDICAL_MODEL_CONFIG["model_path"],
|
35 |
-
medical_weights=True
|
36 |
-
).to(device).eval()
|
37 |
-
|
38 |
-
# Load medical-optimized VAE
|
39 |
-
vae = AutoencoderKL.from_pretrained(
|
40 |
-
MEDICAL_MODEL_CONFIG["vae_path"],
|
41 |
-
subfolder="vae",
|
42 |
-
medical_config=True
|
43 |
-
).to(device).eval()
|
44 |
|
45 |
-
|
46 |
-
print(f"Error loading medical models: {str(e)}")
|
47 |
-
raise
|
48 |
|
49 |
# Medical image analysis function
|
50 |
-
|
51 |
-
def medical_image_analysis(image, question, seed=42, top_p=0.95, temperature=0.1):
|
52 |
-
torch.manual_seed(seed)
|
53 |
-
np.random.seed(seed)
|
54 |
-
|
55 |
try:
|
56 |
-
#
|
|
|
|
|
|
|
|
|
57 |
if isinstance(image, np.ndarray):
|
58 |
image = Image.fromarray(image).convert("RGB")
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
"role": "Radiologist",
|
63 |
-
"content": f"<medical_image>\n{question}",
|
64 |
-
"images": [image],
|
65 |
-
}]
|
66 |
-
|
67 |
-
inputs = vl_chat_processor(
|
68 |
-
conversations=conversation,
|
69 |
images=[image],
|
70 |
-
|
71 |
-
max_length=MEDICAL_MODEL_CONFIG["max_analysis_length"]
|
72 |
).to(device)
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
76 |
attention_mask=inputs.attention_mask,
|
77 |
-
max_new_tokens=
|
78 |
temperature=temperature,
|
79 |
-
top_p=top_p
|
80 |
-
medical_context=True
|
81 |
)
|
82 |
-
|
83 |
-
|
84 |
-
return clean_medical_report(report)
|
85 |
-
|
86 |
except Exception as e:
|
87 |
-
return f"
|
88 |
|
89 |
-
# Medical
|
90 |
-
|
91 |
-
|
92 |
-
torch.manual_seed(seed)
|
93 |
|
94 |
-
|
95 |
-
# Medical prompt validation
|
96 |
-
if not validate_medical_prompt(prompt):
|
97 |
-
return ["Invalid medical prompt - please provide specific anatomical details"]
|
98 |
-
|
99 |
-
inputs = vl_chat_processor.encode_medical_prompt(
|
100 |
-
prompt,
|
101 |
-
max_length=MEDICAL_MODEL_CONFIG["max_analysis_length"],
|
102 |
-
device=device
|
103 |
-
)
|
104 |
-
|
105 |
-
# Medical image generation pipeline
|
106 |
-
with torch.autocast(device.type):
|
107 |
-
images = vae.decode_latents(
|
108 |
-
vl_gpt.generate_medical_latents(
|
109 |
-
inputs,
|
110 |
-
guidance_scale=guidance,
|
111 |
-
num_inference_steps=steps
|
112 |
-
)
|
113 |
-
)
|
114 |
-
|
115 |
-
return postprocess_medical_images(images)
|
116 |
-
|
117 |
-
except Exception as e:
|
118 |
-
return [f"Medical imaging error: {str(e)}"]
|
119 |
-
|
120 |
-
# Helper functions
|
121 |
-
def validate_medical_prompt(prompt):
|
122 |
-
medical_terms = ["MRI", "CT", "X-ray", "ultrasound", "histology", "anatomy"]
|
123 |
-
return any(term in prompt.lower() for term in medical_terms)
|
124 |
-
|
125 |
-
def postprocess_medical_images(images):
|
126 |
-
processed = []
|
127 |
-
for img in images:
|
128 |
-
img = Image.fromarray(img).resize(
|
129 |
-
(MEDICAL_MODEL_CONFIG["min_image_size"],
|
130 |
-
MEDICAL_MODEL_CONFIG["min_image_size"]),
|
131 |
-
Image.LANCZOS
|
132 |
-
)
|
133 |
-
processed.append(img)
|
134 |
-
return processed
|
135 |
-
|
136 |
-
def clean_medical_report(text):
|
137 |
-
return text.replace("##MEDICAL_REPORT##", "").strip()
|
138 |
-
|
139 |
-
# Medical-grade interface
|
140 |
-
with gr.Blocks(title="Medical Imaging AI Assistant", theme="soft") as demo:
|
141 |
-
gr.Markdown("""# Medical Imaging Analysis & Generation System
|
142 |
-
**Certified for diagnostic support use**""")
|
143 |
-
|
144 |
-
with gr.Tab("Radiology Analysis"):
|
145 |
with gr.Row():
|
146 |
-
gr.
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
with gr.Row():
|
156 |
-
gr.Markdown("## Synthetic Medical Image Generation")
|
157 |
-
with gr.Column():
|
158 |
-
imaging_protocol = gr.Textbox(label="Imaging Protocol")
|
159 |
-
generate_btn = gr.Button("Generate Study", variant="primary")
|
160 |
-
|
161 |
-
study_gallery = gr.Gallery(
|
162 |
-
label="Generated Images",
|
163 |
-
columns=2,
|
164 |
-
height=MEDICAL_MODEL_CONFIG["max_image_size"]
|
165 |
)
|
166 |
-
|
167 |
-
# Medical workflow connections
|
168 |
-
analysis_btn.click(
|
169 |
-
medical_image_analysis,
|
170 |
-
inputs=[medical_image, clinical_query],
|
171 |
-
outputs=report_output
|
172 |
-
)
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
inputs=[
|
177 |
-
outputs=
|
178 |
)
|
179 |
|
180 |
-
|
181 |
-
demo.launch(
|
182 |
-
server_name="0.0.0.0",
|
183 |
-
server_port=7860,
|
184 |
-
enable_queue=True,
|
185 |
-
max_threads=2,
|
186 |
-
show_error=True
|
187 |
-
)
|
|
|
1 |
import torch
|
2 |
+
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
3 |
from PIL import Image
|
4 |
+
from diffusers import AutoencoderKL
|
5 |
import numpy as np
|
6 |
import gradio as gr
|
|
|
7 |
|
8 |
+
# Configure device
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
print(f"Using device: {device}")
|
11 |
|
12 |
+
# Initialize medical imaging components
|
13 |
+
def load_medical_models():
|
14 |
+
try:
|
15 |
+
# Load processor and tokenizer
|
16 |
+
processor = VLChatProcessor.from_pretrained("deepseek-ai/Janus-1.3B")
|
17 |
+
|
18 |
+
# Load base model
|
19 |
+
model = MultiModalityCausalLM.from_pretrained(
|
20 |
+
"deepseek-ai/Janus-1.3B",
|
21 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
|
22 |
+
).to(device).eval()
|
23 |
+
|
24 |
+
# Load VAE for image processing
|
25 |
+
vae = AutoencoderKL.from_pretrained(
|
26 |
+
"stabilityai/sdxl-vae",
|
27 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
|
28 |
+
).to(device).eval()
|
29 |
+
|
30 |
+
return processor, model, vae
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Error loading models: {str(e)}")
|
33 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
processor, model, vae = load_medical_models()
|
|
|
|
|
36 |
|
37 |
# Medical image analysis function
|
38 |
+
def medical_analysis(image, question, seed=42, top_p=0.95, temperature=0.1):
|
|
|
|
|
|
|
|
|
39 |
try:
|
40 |
+
# Set random seed for reproducibility
|
41 |
+
torch.manual_seed(seed)
|
42 |
+
np.random.seed(seed)
|
43 |
+
|
44 |
+
# Prepare inputs
|
45 |
if isinstance(image, np.ndarray):
|
46 |
image = Image.fromarray(image).convert("RGB")
|
47 |
|
48 |
+
inputs = processor(
|
49 |
+
text=question,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
images=[image],
|
51 |
+
return_tensors="pt"
|
|
|
52 |
).to(device)
|
53 |
+
|
54 |
+
# Generate analysis
|
55 |
+
outputs = model.generate(
|
56 |
+
inputs.input_ids,
|
57 |
attention_mask=inputs.attention_mask,
|
58 |
+
max_new_tokens=512,
|
59 |
temperature=temperature,
|
60 |
+
top_p=top_p
|
|
|
61 |
)
|
62 |
+
|
63 |
+
return processor.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
64 |
except Exception as e:
|
65 |
+
return f"Analysis error: {str(e)}"
|
66 |
|
67 |
+
# Medical interface
|
68 |
+
with gr.Blocks(title="Medical Imaging Assistant") as demo:
|
69 |
+
gr.Markdown("# Medical Imaging AI Assistant")
|
|
|
70 |
|
71 |
+
with gr.Tab("Analysis"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
with gr.Row():
|
73 |
+
med_image = gr.Image(label="Input Image", type="pil")
|
74 |
+
med_question = gr.Textbox(label="Clinical Query")
|
75 |
+
analysis_output = gr.Textbox(label="Findings")
|
76 |
+
gr.Examples(
|
77 |
+
examples=[
|
78 |
+
["ultrasound_sample.jpg", "Identify any abnormalities in this ultrasound"],
|
79 |
+
["xray_sample.jpg", "Describe the bone structure visible in this X-ray"]
|
80 |
+
],
|
81 |
+
inputs=[med_image, med_question]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
med_question.submit(
|
85 |
+
medical_analysis,
|
86 |
+
inputs=[med_image, med_question],
|
87 |
+
outputs=analysis_output
|
88 |
)
|
89 |
|
90 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|