Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
import google.generativeai as genai
|
4 |
-
# from elevenlabs.client import ElevenLabs # Temporarily disabled
|
5 |
-
from tavily import TavilyClient
|
6 |
-
import requests
|
7 |
-
import subprocess
|
8 |
import json
|
9 |
import time
|
10 |
import random
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
# --- 1. CONFIGURE API KEYS
|
13 |
try:
|
14 |
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
|
15 |
tavily_client = TavilyClient(api_key=os.environ["TAVILY_API_KEY"])
|
16 |
RUNWAY_API_KEY = os.environ["RUNWAY_API_KEY"]
|
|
|
17 |
except KeyError as e:
|
18 |
-
|
19 |
-
raise ValueError(f"API Key Error: Please set the {e} secret in your Hugging Face Space settings.")
|
20 |
|
21 |
-
# --- 2.
|
22 |
-
RUNWAY_API_URL = "https://api.runwayml.com/v2"
|
23 |
-
RUNWAY_HEADERS = {
|
24 |
-
"Authorization": f"Bearer {RUNWAY_API_KEY}",
|
25 |
-
"Content-Type": "application/json"
|
26 |
-
}
|
27 |
-
|
28 |
-
# --- 3. THE CORE VIDEO GENERATION FUNCTION ---
|
29 |
def generate_video_from_topic(topic_prompt, progress=gr.Progress(track_tqdm=True)):
|
30 |
job_id = f"{int(time.time())}_{random.randint(1000, 9999)}"
|
31 |
print(f"--- Starting New Job: {job_id} for topic: '{topic_prompt}' ---")
|
32 |
-
|
33 |
intermediate_files = []
|
34 |
|
35 |
try:
|
@@ -37,7 +29,10 @@ def generate_video_from_topic(topic_prompt, progress=gr.Progress(track_tqdm=True
|
|
37 |
progress(0.1, desc="π Researching topic with Tavily...")
|
38 |
facts = "No research data available."
|
39 |
try:
|
40 |
-
research_results = tavily_client.search(
|
|
|
|
|
|
|
41 |
if research_results and 'results' in research_results:
|
42 |
facts = "\n".join([res['content'] for res in research_results['results']])
|
43 |
except Exception as e:
|
@@ -51,14 +46,21 @@ def generate_video_from_topic(topic_prompt, progress=gr.Progress(track_tqdm=True
|
|
51 |
Your output MUST be a valid JSON object with "narration_script" (string) and "scene_prompts" (a list of 4 detailed, cinematic prompts).
|
52 |
"""
|
53 |
response = gemini_model.generate_content(prompt)
|
54 |
-
|
55 |
try:
|
56 |
-
cleaned_text =
|
|
|
|
|
|
|
|
|
|
|
57 |
script_data = json.loads(cleaned_text)
|
58 |
narration = script_data['narration_script']
|
59 |
scene_prompts = script_data['scene_prompts']
|
60 |
except (json.JSONDecodeError, KeyError) as e:
|
61 |
-
raise gr.Error(
|
|
|
|
|
62 |
|
63 |
# STEP 3: MOCK VOICE OVER
|
64 |
progress(0.3, desc="ποΈ MOCKING voiceover to save credits...")
|
@@ -66,62 +68,39 @@ def generate_video_from_topic(topic_prompt, progress=gr.Progress(track_tqdm=True
|
|
66 |
intermediate_files.append(audio_path)
|
67 |
narration_duration = len(narration.split()) / 2.5
|
68 |
subprocess.run([
|
69 |
-
'ffmpeg', '-f', 'lavfi', '-i',
|
70 |
-
'-t', str(narration_duration), '-q:a', '9', '-acodec', 'libmp3lame',
|
71 |
audio_path, '-y'
|
72 |
], check=True)
|
73 |
-
print(f"MOCK audio file saved
|
74 |
|
75 |
-
# STEP 4:
|
76 |
video_clip_paths = []
|
77 |
-
for i, scene_prompt in enumerate(scene_prompts):
|
78 |
-
progress(0.4 + (i * 0.12), desc=f"π¬ Generating
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
task_id = post_response.json().get("uuid")
|
96 |
-
if not task_id:
|
97 |
-
raise gr.Error(f"Runway API did not return a task UUID. Response: {post_response.json()}")
|
98 |
-
|
99 |
-
video_url = None
|
100 |
-
for _ in range(60):
|
101 |
-
get_response = requests.get(f"{RUNWAY_API_URL}/tasks/{task_id}", headers=RUNWAY_HEADERS)
|
102 |
-
status_details = get_response.json()
|
103 |
-
status = status_details.get("status")
|
104 |
-
|
105 |
-
if status == "succeeded":
|
106 |
-
video_url = status_details.get("outputs", {}).get("video")
|
107 |
-
break
|
108 |
-
elif status == "failed":
|
109 |
-
raise gr.Error(f"Runway job failed. Details: {status_details.get('error_message')}")
|
110 |
-
|
111 |
-
print(f"Scene {i+1} status: {status}. Waiting 10 seconds...")
|
112 |
-
time.sleep(10)
|
113 |
-
|
114 |
-
if not video_url:
|
115 |
-
raise gr.Error(f"Runway job timed out for scene {i+1}.")
|
116 |
-
|
117 |
-
clip_path = f"scene_{i+1}_{job_id}.mp4"
|
118 |
intermediate_files.append(clip_path)
|
119 |
video_clip_paths.append(clip_path)
|
120 |
-
|
121 |
-
|
122 |
with open(clip_path, "wb") as f:
|
123 |
-
for chunk in
|
124 |
-
if chunk:
|
|
|
125 |
print(f"Video clip saved: {clip_path}")
|
126 |
|
127 |
# STEP 5: STITCHING (FFmpeg)
|
@@ -134,43 +113,56 @@ def generate_video_from_topic(topic_prompt, progress=gr.Progress(track_tqdm=True
|
|
134 |
|
135 |
combined_video_path = f"combined_video_{job_id}.mp4"
|
136 |
intermediate_files.append(combined_video_path)
|
137 |
-
subprocess.run([
|
138 |
-
|
|
|
|
|
|
|
139 |
final_video_path = f"final_video_{job_id}.mp4"
|
140 |
-
subprocess.run([
|
|
|
|
|
|
|
|
|
141 |
print(f"Final video created at: {final_video_path}")
|
142 |
-
|
143 |
progress(1.0, desc="β
Done!")
|
144 |
return final_video_path
|
145 |
|
146 |
except Exception as e:
|
147 |
-
print(f"--- JOB {job_id} FAILED
|
148 |
raise gr.Error(f"An error occurred: {e}")
|
149 |
-
|
150 |
finally:
|
151 |
-
# STEP 6: CLEANUP
|
152 |
print("Cleaning up intermediate files...")
|
153 |
for file_path in intermediate_files:
|
154 |
if os.path.exists(file_path):
|
155 |
os.remove(file_path)
|
156 |
print(f"Removed: {file_path}")
|
157 |
|
158 |
-
# ---
|
159 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
160 |
gr.Markdown("# π€ My Personal AI Video Studio")
|
161 |
gr.Markdown("Enter a topic to generate a short-form video. This private tool is used for fulfilling freelance orders.")
|
162 |
-
|
163 |
with gr.Row():
|
164 |
-
topic_input = gr.Textbox(
|
|
|
|
|
|
|
|
|
165 |
generate_button = gr.Button("Generate Video", variant="primary", scale=1)
|
166 |
-
|
167 |
with gr.Row():
|
168 |
video_output = gr.Video(label="Generated Video")
|
169 |
-
|
170 |
-
generate_button.click(fn=generate_video_from_topic, inputs=topic_input, outputs=video_output)
|
171 |
-
|
172 |
-
gr.Markdown("--- \n ### Examples of Good Topics:\n - A product: 'The new waterproof Chrono-Watch X1'\n - A concept: 'The science of sleep'")
|
173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
if __name__ == "__main__":
|
176 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
3 |
import json
|
4 |
import time
|
5 |
import random
|
6 |
+
import subprocess
|
7 |
+
import google.generativeai as genai
|
8 |
+
from tavily import TavilyClient
|
9 |
+
from runwayml import RunwayML, TaskFailedError
|
10 |
|
11 |
+
# --- 1. CONFIGURE API KEYS ---
|
12 |
try:
|
13 |
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
|
14 |
tavily_client = TavilyClient(api_key=os.environ["TAVILY_API_KEY"])
|
15 |
RUNWAY_API_KEY = os.environ["RUNWAY_API_KEY"]
|
16 |
+
runway_client = RunwayML(api_key=RUNWAY_API_KEY)
|
17 |
except KeyError as e:
|
18 |
+
raise ValueError(f"API Key Error: Please set the {e} secret in your environment.")
|
|
|
19 |
|
20 |
+
# --- 2. CORE VIDEO GENERATION FUNCTION ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def generate_video_from_topic(topic_prompt, progress=gr.Progress(track_tqdm=True)):
|
22 |
job_id = f"{int(time.time())}_{random.randint(1000, 9999)}"
|
23 |
print(f"--- Starting New Job: {job_id} for topic: '{topic_prompt}' ---")
|
24 |
+
|
25 |
intermediate_files = []
|
26 |
|
27 |
try:
|
|
|
29 |
progress(0.1, desc="π Researching topic with Tavily...")
|
30 |
facts = "No research data available."
|
31 |
try:
|
32 |
+
research_results = tavily_client.search(
|
33 |
+
query=f"Key facts and interesting points about {topic_prompt}",
|
34 |
+
search_depth="basic"
|
35 |
+
)
|
36 |
if research_results and 'results' in research_results:
|
37 |
facts = "\n".join([res['content'] for res in research_results['results']])
|
38 |
except Exception as e:
|
|
|
46 |
Your output MUST be a valid JSON object with "narration_script" (string) and "scene_prompts" (a list of 4 detailed, cinematic prompts).
|
47 |
"""
|
48 |
response = gemini_model.generate_content(prompt)
|
49 |
+
|
50 |
try:
|
51 |
+
cleaned_text = (
|
52 |
+
response.text
|
53 |
+
.strip()
|
54 |
+
.replace("```json", "")
|
55 |
+
.replace("```", "")
|
56 |
+
)
|
57 |
script_data = json.loads(cleaned_text)
|
58 |
narration = script_data['narration_script']
|
59 |
scene_prompts = script_data['scene_prompts']
|
60 |
except (json.JSONDecodeError, KeyError) as e:
|
61 |
+
raise gr.Error(
|
62 |
+
f"Gemini did not return valid JSON. Error: {e}. Response was: {response.text}"
|
63 |
+
)
|
64 |
|
65 |
# STEP 3: MOCK VOICE OVER
|
66 |
progress(0.3, desc="ποΈ MOCKING voiceover to save credits...")
|
|
|
68 |
intermediate_files.append(audio_path)
|
69 |
narration_duration = len(narration.split()) / 2.5
|
70 |
subprocess.run([
|
71 |
+
'ffmpeg', '-f', 'lavfi', '-i', 'anullsrc=r=44100:cl=mono',
|
72 |
+
'-t', str(narration_duration), '-q:a', '9', '-acodec', 'libmp3lame',
|
73 |
audio_path, '-y'
|
74 |
], check=True)
|
75 |
+
print(f"MOCK audio file saved: {audio_path}")
|
76 |
|
77 |
+
# STEP 4: GENERATE VIDEO SCENES (Runway SDK)
|
78 |
video_clip_paths = []
|
79 |
+
for i, scene_prompt in enumerate(scene_prompts, start=1):
|
80 |
+
progress(0.4 + (i * 0.12), desc=f"π¬ Generating scene {i}/{len(scene_prompts)}...")
|
81 |
+
try:
|
82 |
+
task = (
|
83 |
+
runway_client.image_to_video.create(
|
84 |
+
model="gen4_turbo",
|
85 |
+
prompt_text=scene_prompt,
|
86 |
+
duration=5,
|
87 |
+
ratio="1280:720"
|
88 |
+
)
|
89 |
+
.wait_for_task_output()
|
90 |
+
)
|
91 |
+
video_url = task.output[0]
|
92 |
+
except TaskFailedError as e:
|
93 |
+
raise gr.Error(f"Runway job failed: {e.task_details}")
|
94 |
+
|
95 |
+
clip_path = f"scene_{i}_{job_id}.mp4"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
intermediate_files.append(clip_path)
|
97 |
video_clip_paths.append(clip_path)
|
98 |
+
|
99 |
+
# Download the scene clip
|
100 |
with open(clip_path, "wb") as f:
|
101 |
+
for chunk in runway_client._session.get(video_url, stream=True).iter_content(chunk_size=1024):
|
102 |
+
if chunk:
|
103 |
+
f.write(chunk)
|
104 |
print(f"Video clip saved: {clip_path}")
|
105 |
|
106 |
# STEP 5: STITCHING (FFmpeg)
|
|
|
113 |
|
114 |
combined_video_path = f"combined_video_{job_id}.mp4"
|
115 |
intermediate_files.append(combined_video_path)
|
116 |
+
subprocess.run([
|
117 |
+
'ffmpeg', '-f', 'concat', '-safe', '0',
|
118 |
+
'-i', file_list_path, '-c', 'copy', combined_video_path, '-y'
|
119 |
+
], check=True)
|
120 |
+
|
121 |
final_video_path = f"final_video_{job_id}.mp4"
|
122 |
+
subprocess.run([
|
123 |
+
'ffmpeg', '-i', combined_video_path,
|
124 |
+
'-i', audio_path,
|
125 |
+
'-c:v', 'copy', '-c:a', 'aac', '-shortest', final_video_path, '-y'
|
126 |
+
], check=True)
|
127 |
print(f"Final video created at: {final_video_path}")
|
128 |
+
|
129 |
progress(1.0, desc="β
Done!")
|
130 |
return final_video_path
|
131 |
|
132 |
except Exception as e:
|
133 |
+
print(f"--- JOB {job_id} FAILED ---\nError: {e}")
|
134 |
raise gr.Error(f"An error occurred: {e}")
|
135 |
+
|
136 |
finally:
|
|
|
137 |
print("Cleaning up intermediate files...")
|
138 |
for file_path in intermediate_files:
|
139 |
if os.path.exists(file_path):
|
140 |
os.remove(file_path)
|
141 |
print(f"Removed: {file_path}")
|
142 |
|
143 |
+
# --- 3. LAUNCH GRADIO APP ---
|
144 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
145 |
gr.Markdown("# π€ My Personal AI Video Studio")
|
146 |
gr.Markdown("Enter a topic to generate a short-form video. This private tool is used for fulfilling freelance orders.")
|
147 |
+
|
148 |
with gr.Row():
|
149 |
+
topic_input = gr.Textbox(
|
150 |
+
label="Video Topic",
|
151 |
+
placeholder="e.g., 'The history of coffee'",
|
152 |
+
scale=3
|
153 |
+
)
|
154 |
generate_button = gr.Button("Generate Video", variant="primary", scale=1)
|
155 |
+
|
156 |
with gr.Row():
|
157 |
video_output = gr.Video(label="Generated Video")
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
generate_button.click(
|
160 |
+
fn=generate_video_from_topic,
|
161 |
+
inputs=topic_input,
|
162 |
+
outputs=video_output
|
163 |
+
)
|
164 |
+
|
165 |
+
gr.Markdown("--- \n ### Examples of Good Topics:\n - A product: 'The new waterproof Chrono-Watch X1'\n - A concept: 'The science of sleep'")
|
166 |
|
167 |
if __name__ == "__main__":
|
168 |
+
demo.launch()
|