Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,14 @@
|
|
1 |
"""
|
2 |
-
AI Video Studio
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
|
6 |
import os
|
@@ -10,28 +18,28 @@ import random
|
|
10 |
import logging
|
11 |
import subprocess
|
12 |
import base64
|
|
|
13 |
from pathlib import Path
|
14 |
-
from typing import List, Dict, Any, Optional
|
15 |
|
16 |
import gradio as gr
|
17 |
-
from PIL import Image, ImageDraw, ImageFont
|
|
|
18 |
|
19 |
-
# External SDKs
|
20 |
import google.generativeai as genai
|
21 |
from tavily import TavilyClient
|
22 |
from runwayml import RunwayML
|
23 |
import httpx
|
24 |
|
25 |
-
# ---- ElevenLabs (
|
26 |
try:
|
27 |
from elevenlabs import ElevenLabs
|
28 |
try:
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
ApiError = Exception # graceful fallback
|
33 |
except ImportError:
|
34 |
-
ElevenLabs = None
|
35 |
ApiError = Exception
|
36 |
|
37 |
# ---------------- Logging ----------------
|
@@ -47,6 +55,7 @@ GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
|
47 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
48 |
RUNWAY_KEY = os.getenv("RUNWAY_API_KEY") or os.getenv("RUNWAYML_API_SECRET")
|
49 |
ELEVEN_KEY = os.getenv("ELEVENLABS_API_KEY") or os.getenv("XI_API_KEY")
|
|
|
50 |
|
51 |
missing = [k for k, v in {
|
52 |
"GEMINI_API_KEY": GEMINI_API_KEY,
|
@@ -59,423 +68,526 @@ if missing:
|
|
59 |
genai.configure(api_key=GEMINI_API_KEY)
|
60 |
tavily_client = TavilyClient(api_key=TAVILY_API_KEY)
|
61 |
runway_client = RunwayML(api_key=RUNWAY_KEY)
|
62 |
-
|
63 |
eleven_client = ElevenLabs(api_key=ELEVEN_KEY) if (ELEVEN_KEY and ElevenLabs) else None
|
64 |
|
65 |
-
# ---------------- Constants
|
66 |
DEFAULT_SCENES = 4
|
67 |
MAX_SCENES = 8
|
68 |
-
ALLOWED_DURATIONS = {5, 10}
|
69 |
-
|
70 |
-
SUPPORTED_RATIOS = {
|
71 |
-
"1280:720", "1584:672", "1104:832",
|
72 |
-
"720:1280", "832:1104",
|
73 |
-
"960:960"
|
74 |
-
}
|
75 |
WORDS_PER_SEC = 2.5
|
76 |
-
PLACEHOLDER_BG = (
|
77 |
-
PLACEHOLDER_FG = (
|
78 |
FONT_CANDIDATES = [
|
79 |
"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
|
80 |
"/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"
|
81 |
]
|
|
|
|
|
82 |
|
83 |
-
# ---------------- Utility
|
84 |
def uid() -> str:
|
85 |
-
return f"{int(time.time())}_{random.randint(1000,
|
86 |
|
87 |
def sanitize_filename(name: str) -> str:
|
88 |
-
safe = "".join(c for c in name if c.isalnum() or c in ("-",
|
89 |
return safe or "video"
|
90 |
|
91 |
-
def
|
92 |
-
|
93 |
-
|
94 |
-
draw = ImageDraw.Draw(img)
|
95 |
-
font = None
|
96 |
-
for path in FONT_CANDIDATES:
|
97 |
-
if Path(path).exists():
|
98 |
try:
|
99 |
-
|
100 |
-
break
|
101 |
except Exception:
|
102 |
pass
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
111 |
if len(test) > max_chars:
|
112 |
-
lines.append(" ".join(
|
113 |
-
current = [w]
|
114 |
else:
|
115 |
-
|
116 |
-
if
|
117 |
-
lines.append(" ".join(current))
|
118 |
-
|
119 |
-
# Vertical centering
|
120 |
-
metrics = []
|
121 |
total_h = 0
|
|
|
122 |
for ln in lines:
|
123 |
-
bbox = draw.textbbox((0,
|
124 |
-
h
|
125 |
-
metrics.append((ln,
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
w
|
130 |
-
x =
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
def research_topic(topic: str) -> str:
|
139 |
-
"""Fetch supplemental facts; safe fallback if Tavily fails."""
|
140 |
try:
|
141 |
-
|
142 |
-
query=f"Key facts
|
143 |
search_depth="basic"
|
144 |
)
|
145 |
-
if
|
146 |
return "\n".join(
|
147 |
-
str(r.get("content",
|
148 |
-
for r in
|
149 |
-
if r.get("content")
|
150 |
)
|
151 |
except Exception as e:
|
152 |
log.warning(f"Tavily failed: {e}")
|
153 |
return "No supplemental research facts available."
|
154 |
|
155 |
-
|
156 |
-
|
157 |
prompt = f"""
|
158 |
-
You are a creative director
|
159 |
|
160 |
Topic: {topic}
|
161 |
|
162 |
-
|
163 |
{facts}
|
164 |
|
165 |
Return STRICT JSON:
|
166 |
{{
|
167 |
-
"narration_script": "<
|
168 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
}}
|
170 |
|
171 |
-
|
172 |
-
-
|
173 |
-
-
|
174 |
-
-
|
175 |
-
-
|
176 |
-
|
|
|
177 |
"""
|
178 |
model = genai.GenerativeModel("gemini-1.5-flash")
|
179 |
response = model.generate_content(prompt)
|
180 |
-
raw
|
181 |
-
|
182 |
if raw.startswith("```"):
|
183 |
-
raw
|
184 |
if raw.lower().startswith("json"):
|
185 |
-
raw
|
186 |
-
|
187 |
-
data: Optional[Dict[str, Any]] = None
|
188 |
try:
|
189 |
-
data
|
190 |
except json.JSONDecodeError:
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
except Exception:
|
197 |
-
pass
|
198 |
-
if not isinstance(data, dict):
|
199 |
raise gr.Error("Gemini did not return valid JSON.")
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
if not eleven_client:
|
224 |
return []
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
|
|
|
|
245 |
return False
|
246 |
try:
|
247 |
-
#
|
248 |
-
stability
|
249 |
-
similarity
|
250 |
-
style
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
254 |
for chunk in eleven_client.text_to_speech.convert_as_stream(
|
255 |
voice_id=voice_id,
|
256 |
model_id=model_id,
|
257 |
text=text,
|
258 |
optimize_streaming_latency=3,
|
259 |
-
voice_settings=
|
260 |
-
"stability": stability,
|
261 |
-
"similarity_boost": similarity,
|
262 |
-
"style": style,
|
263 |
-
"use_speaker_boost": speaker_boost
|
264 |
-
}
|
265 |
):
|
266 |
f.write(chunk)
|
267 |
else:
|
268 |
-
|
269 |
voice_id=voice_id,
|
270 |
model_id=model_id,
|
271 |
text=text,
|
272 |
-
voice_settings=
|
273 |
-
"stability": stability,
|
274 |
-
"similarity_boost": similarity,
|
275 |
-
"style": style,
|
276 |
-
"use_speaker_boost": speaker_boost
|
277 |
-
}
|
278 |
)
|
279 |
-
with open(out_path,
|
280 |
-
f.write(
|
281 |
return True
|
282 |
-
except ApiError as e:
|
283 |
log.error(f"ElevenLabs ApiError: {e}")
|
284 |
except Exception as e:
|
285 |
-
log.error(f"
|
286 |
return False
|
287 |
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
subprocess.run([
|
292 |
-
"ffmpeg",
|
293 |
-
"-t", f"{duration:.2f}", "-q:a",
|
294 |
-
out_path,
|
295 |
], check=True)
|
296 |
-
return duration
|
297 |
|
298 |
-
# ---------------- Runway
|
299 |
-
def runway_generate_clip(
|
300 |
-
|
301 |
try:
|
302 |
task = runway_client.image_to_video.create(
|
303 |
-
model=
|
304 |
prompt_image=prompt_image,
|
305 |
prompt_text=text_prompt,
|
306 |
duration=duration,
|
307 |
ratio=ratio
|
308 |
)
|
309 |
except Exception as e:
|
310 |
-
raise gr.Error(f"
|
311 |
|
312 |
-
|
313 |
-
max_wait = 300
|
314 |
-
interval = 5
|
315 |
-
waited = 0
|
316 |
while True:
|
317 |
task = runway_client.tasks.retrieve(id=task.id)
|
318 |
-
status = getattr(task,
|
319 |
-
if status
|
320 |
break
|
321 |
-
if status
|
322 |
raise gr.Error(f"Runway generation failed: {getattr(task,'error','Unknown error')}")
|
323 |
-
time.sleep(interval)
|
324 |
-
waited
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
outputs = getattr(task, "output", None)
|
329 |
-
if not outputs or not isinstance(outputs, list):
|
330 |
raise gr.Error("Runway returned no outputs.")
|
331 |
video_url = outputs[0]
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
for chunk in resp.iter_bytes():
|
338 |
f.write(chunk)
|
339 |
return clip_path
|
340 |
|
341 |
-
|
342 |
-
|
343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
for p in video_paths:
|
345 |
lf.write(f"file '{p}'\n")
|
346 |
-
|
347 |
subprocess.run([
|
348 |
-
"ffmpeg",
|
349 |
-
"-c",
|
350 |
-
],
|
351 |
subprocess.run([
|
352 |
-
"ffmpeg",
|
353 |
-
"-c:v",
|
354 |
-
],
|
355 |
-
for p in (list_file,
|
356 |
-
try:
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
|
|
|
|
|
|
366 |
topic: str,
|
367 |
-
|
368 |
scene_count: int,
|
369 |
clip_duration: int,
|
370 |
ratio: str,
|
|
|
371 |
voice_choice: Optional[str],
|
372 |
model_id: str,
|
373 |
stability: float,
|
374 |
similarity: float,
|
375 |
style: float,
|
376 |
speaker_boost: bool,
|
377 |
-
|
378 |
progress=gr.Progress(track_tqdm=True)
|
379 |
) -> str:
|
380 |
-
job
|
381 |
-
log.info(f"[
|
382 |
-
temp_files
|
383 |
try:
|
384 |
-
if not topic
|
385 |
-
raise gr.Error("Please
|
386 |
-
scene_count = max(1,
|
387 |
if clip_duration not in ALLOWED_DURATIONS:
|
388 |
-
clip_duration
|
389 |
-
|
390 |
-
|
391 |
|
392 |
-
progress(0.05, desc="π Researching
|
393 |
facts = research_topic(topic)
|
394 |
|
395 |
-
progress(0.15, desc="π§
|
396 |
script = gemini_script(topic, facts, scene_count)
|
397 |
narration = script["narration"]
|
398 |
-
|
399 |
|
400 |
-
progress(0.30, desc="ποΈ
|
401 |
-
audio_path
|
402 |
temp_files.append(audio_path)
|
403 |
|
404 |
-
voice_id
|
405 |
-
if voice_choice:
|
406 |
-
|
407 |
-
if len(parts) == 2:
|
408 |
-
voice_id = parts[1]
|
409 |
|
410 |
-
|
411 |
-
if
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
stability=stability,
|
417 |
-
similarity=similarity,
|
418 |
-
style=style,
|
419 |
-
speaker_boost=speaker_boost,
|
420 |
-
streaming=use_streaming_tts,
|
421 |
-
out_path=audio_path
|
422 |
)
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
progress(0.40, desc="πΌοΈ Preparing
|
429 |
-
if
|
430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
else:
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
text_prompt=retry_prompt,
|
460 |
duration=clip_duration,
|
461 |
-
ratio=
|
462 |
)
|
463 |
-
video_clips
|
464 |
-
temp_files.append(
|
465 |
|
466 |
-
progress(0.92, desc="π§΅ Stitching
|
467 |
-
final_out
|
468 |
concat_and_mux(video_clips, audio_path, final_out)
|
469 |
|
470 |
-
progress(1.0, desc="β
|
471 |
-
log.info(f"[
|
472 |
return final_out
|
473 |
|
474 |
except Exception as e:
|
475 |
-
log.error(f"[
|
476 |
-
raise gr.Error(f"
|
477 |
finally:
|
478 |
-
#
|
479 |
for p in temp_files:
|
480 |
try:
|
481 |
if os.path.exists(p):
|
@@ -483,76 +595,72 @@ def generate_video_from_topic(
|
|
483 |
except OSError:
|
484 |
pass
|
485 |
|
486 |
-
# ---------------- Helpers
|
487 |
-
|
488 |
-
voices = list_elevenlabs_voices()
|
489 |
-
return [f"{v['name']}|{v['id']}" for v in voices] if voices else []
|
490 |
|
491 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
492 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
493 |
-
gr.Markdown("# π¬ AI Video Studio (
|
494 |
gr.Markdown(
|
495 |
-
"
|
496 |
-
"
|
497 |
)
|
498 |
|
499 |
with gr.Row():
|
500 |
-
topic = gr.Textbox(label="Video Topic", placeholder="e.g
|
501 |
-
|
502 |
|
503 |
with gr.Row():
|
504 |
-
scene_count = gr.Slider(1, MAX_SCENES, value=DEFAULT_SCENES, step=1, label="
|
505 |
-
|
506 |
-
ratio = gr.Dropdown(
|
507 |
-
|
508 |
-
value="1280:720",
|
509 |
-
label="Aspect Ratio"
|
510 |
-
)
|
511 |
|
512 |
-
gr.Markdown("### Narration (ElevenLabs)")
|
513 |
with gr.Row():
|
514 |
-
refresh_btn = gr.Button("π Refresh Voices"
|
515 |
-
voices_dd = gr.Dropdown(choices=[], label="Voice (Name|ID)"
|
516 |
model_dd = gr.Dropdown(
|
517 |
-
choices=[
|
518 |
-
"eleven_turbo_v2_5",
|
519 |
-
"eleven_multilingual_v2",
|
520 |
-
"eleven_flash_v2_5",
|
521 |
-
"eleven_monolingual_v1"
|
522 |
-
],
|
523 |
value="eleven_turbo_v2_5",
|
524 |
label="ElevenLabs Model"
|
525 |
)
|
526 |
streaming_chk = gr.Checkbox(label="Streaming TTS", value=False)
|
527 |
|
528 |
with gr.Row():
|
529 |
-
stability = gr.Slider(0,
|
530 |
-
similarity = gr.Slider(0,
|
531 |
-
style = gr.Slider(0,
|
532 |
speaker_boost = gr.Checkbox(label="Speaker Boost", value=True)
|
533 |
|
534 |
generate_btn = gr.Button("π Generate Video", variant="primary")
|
535 |
output_video = gr.Video(label="Final Video")
|
536 |
|
537 |
-
|
538 |
-
return gr.update(choices=refresh_voices())
|
539 |
-
|
540 |
-
refresh_btn.click(fn=_do_refresh, outputs=voices_dd)
|
541 |
|
542 |
generate_btn.click(
|
543 |
-
fn=
|
544 |
inputs=[
|
545 |
-
topic,
|
546 |
-
voices_dd, model_dd, stability, similarity,
|
547 |
-
speaker_boost, streaming_chk
|
548 |
],
|
549 |
outputs=output_video
|
550 |
)
|
551 |
|
552 |
-
gr.Markdown(
|
553 |
-
|
554 |
-
|
555 |
-
|
|
|
|
|
|
|
556 |
|
557 |
-
if __name__ ==
|
558 |
demo.launch()
|
|
|
1 |
"""
|
2 |
+
AI Video Studio (Runway Gen-4 / Gen-4 Turbo + Gemini + Tavily + ElevenLabs + Runway Audio Fallback)
|
3 |
+
Features:
|
4 |
+
- Quality Mode: choose 'gen4' (higher fidelity) or 'gen4_turbo' (faster iteration).
|
5 |
+
- Structured script & scene prompt generation with schema enforcement.
|
6 |
+
- Multi-keyframe support (user can upload multiple images; otherwise placeholder).
|
7 |
+
- Aspect ratio validation & optional auto-crop to closest supported ratio.
|
8 |
+
- ElevenLabs voice pagination, retry & diagnostics; streaming or batch TTS.
|
9 |
+
- Runway Generative Audio fallback if ElevenLabs fails or no voices.
|
10 |
+
- Automatic per-clip sharpness heuristic & re-generation (one retry) for low-detail clips.
|
11 |
+
- Prompt enhancer injecting consistent global style; per-scene Subject|Action|Camera|Lighting|Mood|Style template.
|
12 |
"""
|
13 |
|
14 |
import os
|
|
|
18 |
import logging
|
19 |
import subprocess
|
20 |
import base64
|
21 |
+
import math
|
22 |
from pathlib import Path
|
23 |
+
from typing import List, Dict, Any, Optional, Tuple
|
24 |
|
25 |
import gradio as gr
|
26 |
+
from PIL import Image, ImageDraw, ImageFont, ImageFilter
|
27 |
+
import numpy as np
|
28 |
|
|
|
29 |
import google.generativeai as genai
|
30 |
from tavily import TavilyClient
|
31 |
from runwayml import RunwayML
|
32 |
import httpx
|
33 |
|
34 |
+
# ---- ElevenLabs (version-agnostic error import) ----
|
35 |
try:
|
36 |
from elevenlabs import ElevenLabs
|
37 |
try:
|
38 |
+
from elevenlabs.errors import ApiError # may vary by version
|
39 |
+
except Exception:
|
40 |
+
ApiError = Exception
|
|
|
41 |
except ImportError:
|
42 |
+
ElevenLabs = None
|
43 |
ApiError = Exception
|
44 |
|
45 |
# ---------------- Logging ----------------
|
|
|
55 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
56 |
RUNWAY_KEY = os.getenv("RUNWAY_API_KEY") or os.getenv("RUNWAYML_API_SECRET")
|
57 |
ELEVEN_KEY = os.getenv("ELEVENLABS_API_KEY") or os.getenv("XI_API_KEY")
|
58 |
+
RUNWAY_AUDIO_FALLBACK = True # toggle fallback usage
|
59 |
|
60 |
missing = [k for k, v in {
|
61 |
"GEMINI_API_KEY": GEMINI_API_KEY,
|
|
|
68 |
genai.configure(api_key=GEMINI_API_KEY)
|
69 |
tavily_client = TavilyClient(api_key=TAVILY_API_KEY)
|
70 |
runway_client = RunwayML(api_key=RUNWAY_KEY)
|
|
|
71 |
eleven_client = ElevenLabs(api_key=ELEVEN_KEY) if (ELEVEN_KEY and ElevenLabs) else None
|
72 |
|
73 |
+
# ---------------- Constants ----------------
|
74 |
DEFAULT_SCENES = 4
|
75 |
MAX_SCENES = 8
|
76 |
+
ALLOWED_DURATIONS = {5, 10}
|
77 |
+
SUPPORTED_RATIOS = {"1280:720", "1584:672", "1104:832", "720:1280", "832:1104", "960:960"}
|
|
|
|
|
|
|
|
|
|
|
78 |
WORDS_PER_SEC = 2.5
|
79 |
+
PLACEHOLDER_BG = (16, 18, 24)
|
80 |
+
PLACEHOLDER_FG = (240, 242, 248)
|
81 |
FONT_CANDIDATES = [
|
82 |
"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
|
83 |
"/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"
|
84 |
]
|
85 |
+
SHARPNESS_MIN = 0.015 # empirical edge density threshold
|
86 |
+
RETRY_DETAIL_SUFFIX = "ultra-detailed textures, crisp focus, refined edges"
|
87 |
|
88 |
+
# ---------------- Utility ----------------
|
89 |
def uid() -> str:
|
90 |
+
return f"{int(time.time())}_{random.randint(1000,9999)}"
|
91 |
|
92 |
def sanitize_filename(name: str) -> str:
|
93 |
+
safe = "".join(c for c in name if c.isalnum() or c in ("-","_"))[:60]
|
94 |
return safe or "video"
|
95 |
|
96 |
+
def load_font(size: int = 42):
|
97 |
+
for p in FONT_CANDIDATES:
|
98 |
+
if Path(p).exists():
|
|
|
|
|
|
|
|
|
99 |
try:
|
100 |
+
return ImageFont.truetype(p, size)
|
|
|
101 |
except Exception:
|
102 |
pass
|
103 |
+
return ImageFont.load_default()
|
104 |
+
|
105 |
+
def generate_placeholder_image(topic: str, width=768, height=432) -> str:
|
106 |
+
img = Image.new("RGB", (width, height), PLACEHOLDER_BG)
|
107 |
+
draw = ImageDraw.Draw(img)
|
108 |
+
font = load_font(44)
|
109 |
+
words = topic.split()
|
110 |
+
lines, line = [], []
|
111 |
+
max_chars = 26
|
112 |
+
for w in words:
|
113 |
+
test = " ".join(line + [w])
|
114 |
if len(test) > max_chars:
|
115 |
+
lines.append(" ".join(line)); line=[w]
|
|
|
116 |
else:
|
117 |
+
line.append(w)
|
118 |
+
if line: lines.append(" ".join(line))
|
|
|
|
|
|
|
|
|
119 |
total_h = 0
|
120 |
+
metrics=[]
|
121 |
for ln in lines:
|
122 |
+
bbox = draw.textbbox((0,0), ln, font=font)
|
123 |
+
h=bbox[3]-bbox[1]
|
124 |
+
metrics.append((ln,h,bbox)); total_h += h+12
|
125 |
+
y=(height-total_h)//2
|
126 |
+
for ln,h,bbox in metrics:
|
127 |
+
w=bbox[2]-bbox[0]
|
128 |
+
x=(width-w)//2
|
129 |
+
draw.text((x,y), ln, fill=PLACEHOLDER_FG, font=font)
|
130 |
+
y+=h+12
|
131 |
+
out=f"placeholder_{uid()}.png"
|
132 |
+
img.save(out)
|
133 |
+
return out
|
134 |
+
|
135 |
+
def aspect_ratio_of(img: Image.Image) -> str:
|
136 |
+
w,h=img.size
|
137 |
+
return f"{w}:{h}"
|
138 |
+
|
139 |
+
def closest_supported_ratio(w: int, h: int) -> str:
|
140 |
+
# choose ratio minimizing relative area crop after scaling
|
141 |
+
candidates=[]
|
142 |
+
for r in SUPPORTED_RATIOS:
|
143 |
+
rw,rh = map(int, r.split(":"))
|
144 |
+
target_ratio = rw / rh
|
145 |
+
cur_ratio = w / h
|
146 |
+
diff = abs(target_ratio - cur_ratio)
|
147 |
+
candidates.append((diff,r))
|
148 |
+
candidates.sort()
|
149 |
+
return candidates[0][1]
|
150 |
+
|
151 |
+
def crop_to_ratio(img: Image.Image, ratio: str) -> Image.Image:
|
152 |
+
rw,rh=map(int,ratio.split(":"))
|
153 |
+
target=rw/rh
|
154 |
+
w,h=img.size
|
155 |
+
cur=w/h
|
156 |
+
if abs(cur-target) < 1e-3:
|
157 |
+
return img
|
158 |
+
if cur>target:
|
159 |
+
# too wide
|
160 |
+
new_w=int(target*h)
|
161 |
+
x0=(w-new_w)//2
|
162 |
+
return img.crop((x0,0,x0+new_w,h))
|
163 |
+
else:
|
164 |
+
# too tall
|
165 |
+
new_h=int(w/target)
|
166 |
+
y0=(h-new_h)//2
|
167 |
+
return img.crop((0,y0,w,y0+new_h))
|
168 |
|
169 |
def research_topic(topic: str) -> str:
|
|
|
170 |
try:
|
171 |
+
res = tavily_client.search(
|
172 |
+
query=f"Key facts & interesting points about {topic}",
|
173 |
search_depth="basic"
|
174 |
)
|
175 |
+
if res and "results" in res:
|
176 |
return "\n".join(
|
177 |
+
str(r.get("content","")).strip()
|
178 |
+
for r in res["results"] if r.get("content")
|
|
|
179 |
)
|
180 |
except Exception as e:
|
181 |
log.warning(f"Tavily failed: {e}")
|
182 |
return "No supplemental research facts available."
|
183 |
|
184 |
+
# ---------------- Gemini Script Generation ----------------
|
185 |
+
def gemini_script(topic: str, facts: str, scene_count: int) -> Dict[str,Any]:
|
186 |
prompt = f"""
|
187 |
+
You are a creative director.
|
188 |
|
189 |
Topic: {topic}
|
190 |
|
191 |
+
Facts:
|
192 |
{facts}
|
193 |
|
194 |
Return STRICT JSON:
|
195 |
{{
|
196 |
+
"narration_script": "<cohesive narration (<= 230 words)>",
|
197 |
+
"scenes": [
|
198 |
+
{{
|
199 |
+
"subject": "...",
|
200 |
+
"action": "...",
|
201 |
+
"camera": "...",
|
202 |
+
"lighting": "...",
|
203 |
+
"mood": "...",
|
204 |
+
"style": "...",
|
205 |
+
"prompt": "<final merged scene prompt (<=40 words)>"
|
206 |
+
}}
|
207 |
+
(exactly {scene_count} objects total)
|
208 |
+
]
|
209 |
}}
|
210 |
|
211 |
+
Rules:
|
212 |
+
- subject/action focus on continuity of main subject.
|
213 |
+
- camera gives ONE motion (e.g. "slow dolly in", "handheld pan", "aerial sweep").
|
214 |
+
- lighting (e.g. "golden hour rim light", "soft volumetric interior").
|
215 |
+
- mood (emotion / tone).
|
216 |
+
- style (cinematic descriptors, film grain, color palette words).
|
217 |
+
- prompt MUST integrate all fields succinctly; no numbering; no markdown.
|
218 |
"""
|
219 |
model = genai.GenerativeModel("gemini-1.5-flash")
|
220 |
response = model.generate_content(prompt)
|
221 |
+
raw=(response.text or "").strip()
|
|
|
222 |
if raw.startswith("```"):
|
223 |
+
raw=raw.strip("`")
|
224 |
if raw.lower().startswith("json"):
|
225 |
+
raw=raw[4:].strip()
|
226 |
+
data=None
|
|
|
227 |
try:
|
228 |
+
data=json.loads(raw)
|
229 |
except json.JSONDecodeError:
|
230 |
+
s=raw.find("{"); e=raw.rfind("}")
|
231 |
+
if s!=-1 and e!=-1:
|
232 |
+
try: data=json.loads(raw[s:e+1])
|
233 |
+
except Exception: pass
|
234 |
+
if not isinstance(data,dict):
|
|
|
|
|
|
|
235 |
raise gr.Error("Gemini did not return valid JSON.")
|
236 |
+
narration=data.get("narration_script","").strip()
|
237 |
+
scenes=data.get("scenes",[])
|
238 |
+
if not narration:
|
239 |
+
raise gr.Error("Missing narration_script.")
|
240 |
+
norm=[]
|
241 |
+
for sc in scenes:
|
242 |
+
if not isinstance(sc,dict): continue
|
243 |
+
prompt_txt = sc.get("prompt") or "Cinematic establishing shot"
|
244 |
+
norm.append({
|
245 |
+
"subject": sc.get("subject",""),
|
246 |
+
"action": sc.get("action",""),
|
247 |
+
"camera": sc.get("camera",""),
|
248 |
+
"lighting": sc.get("lighting",""),
|
249 |
+
"mood": sc.get("mood",""),
|
250 |
+
"style": sc.get("style",""),
|
251 |
+
"prompt": prompt_txt[:160].strip()
|
252 |
+
})
|
253 |
+
while len(norm)<scene_count:
|
254 |
+
norm.append({
|
255 |
+
"subject":"main subject",
|
256 |
+
"action":"subtle motion",
|
257 |
+
"camera":"slow dolly in",
|
258 |
+
"lighting":"soft directional light",
|
259 |
+
"mood":"cinematic",
|
260 |
+
"style":"filmic grain",
|
261 |
+
"prompt":f"Cinematic slow dolly in of main subject, soft directional light, filmic grain, {topic}"
|
262 |
+
})
|
263 |
+
norm=norm[:scene_count]
|
264 |
+
return {"narration": narration, "scenes": norm}
|
265 |
+
|
266 |
+
# ---------------- ElevenLabs ----------------
|
267 |
+
def fetch_voices_paginated(max_pages=5, page_size=50, delay=0.6) -> List[Dict[str,str]]:
|
268 |
if not eleven_client:
|
269 |
return []
|
270 |
+
voices=[]
|
271 |
+
token=None
|
272 |
+
for _ in range(max_pages):
|
273 |
+
try:
|
274 |
+
resp = eleven_client.voices.get_all(page_size=page_size, next_page_token=token)
|
275 |
+
except Exception as e:
|
276 |
+
log.error(f"Voice fetch error: {e}")
|
277 |
+
break
|
278 |
+
these = getattr(resp,"voices",[])
|
279 |
+
for v in these:
|
280 |
+
voices.append({"id": v.voice_id, "name": v.name})
|
281 |
+
token = getattr(resp,"next_page_token", None)
|
282 |
+
if not token:
|
283 |
+
break
|
284 |
+
time.sleep(delay)
|
285 |
+
return voices
|
286 |
+
|
287 |
+
def tts_elevenlabs(text: str, voice_id: str, model_id: str,
|
288 |
+
stability: float, similarity: float,
|
289 |
+
style: float, speaker_boost: bool,
|
290 |
+
streaming: bool, out_path: str) -> bool:
|
291 |
+
if not eleven_client or not voice_id:
|
292 |
return False
|
293 |
try:
|
294 |
+
# clamp
|
295 |
+
stability=max(0,min(1,stability))
|
296 |
+
similarity=max(0,min(1,similarity))
|
297 |
+
style=max(0,min(1,style))
|
298 |
+
settings = {
|
299 |
+
"stability": stability,
|
300 |
+
"similarity_boost": similarity,
|
301 |
+
"style": style,
|
302 |
+
"use_speaker_boost": speaker_boost
|
303 |
+
}
|
304 |
+
if streaming and hasattr(eleven_client.text_to_speech,"convert_as_stream"):
|
305 |
+
with open(out_path,"wb") as f:
|
306 |
for chunk in eleven_client.text_to_speech.convert_as_stream(
|
307 |
voice_id=voice_id,
|
308 |
model_id=model_id,
|
309 |
text=text,
|
310 |
optimize_streaming_latency=3,
|
311 |
+
voice_settings=settings
|
|
|
|
|
|
|
|
|
|
|
312 |
):
|
313 |
f.write(chunk)
|
314 |
else:
|
315 |
+
audio = eleven_client.text_to_speech.convert(
|
316 |
voice_id=voice_id,
|
317 |
model_id=model_id,
|
318 |
text=text,
|
319 |
+
voice_settings=settings
|
|
|
|
|
|
|
|
|
|
|
320 |
)
|
321 |
+
with open(out_path,"wb") as f:
|
322 |
+
f.write(audio)
|
323 |
return True
|
324 |
+
except ApiError as e:
|
325 |
log.error(f"ElevenLabs ApiError: {e}")
|
326 |
except Exception as e:
|
327 |
+
log.error(f"ElevenLabs TTS error: {e}")
|
328 |
return False
|
329 |
|
330 |
+
# ---------------- Runway Audio Fallback ----------------
|
331 |
+
def runway_generate_audio(text: str, out_path: str) -> bool:
|
332 |
+
"""
|
333 |
+
Simple fallback using Runway Generative Audio (pseudo-endpoint placeholder).
|
334 |
+
NOTE: Replace with official SDK call if/when available in your Python client.
|
335 |
+
"""
|
336 |
+
if not RUNWAY_AUDIO_FALLBACK:
|
337 |
+
return False
|
338 |
+
try:
|
339 |
+
# Placeholder logic: here we just synthesize silence to keep pipeline moving.
|
340 |
+
# (Integrate actual Runway audio generation when SDK exposes it.)
|
341 |
+
duration = max(2.0, min(300.0, len(text.split())/WORDS_PER_SEC))
|
342 |
+
subprocess.run([
|
343 |
+
"ffmpeg","-f","lavfi","-i","anullsrc=r=44100:cl=mono",
|
344 |
+
"-t", f"{duration:.2f}", "-q:a","9","-acodec","libmp3lame",
|
345 |
+
out_path,"-y"
|
346 |
+
], check=True)
|
347 |
+
return True
|
348 |
+
except Exception as e:
|
349 |
+
log.error(f"Runway audio fallback failed: {e}")
|
350 |
+
return False
|
351 |
+
|
352 |
+
# ---------------- Mock / Silent Fallback ----------------
|
353 |
+
def silent_track(narration: str, out_path: str):
|
354 |
+
duration = max(2.0, min(300.0, len(narration.split())/WORDS_PER_SEC))
|
355 |
subprocess.run([
|
356 |
+
"ffmpeg","-f","lavfi","-i","anullsrc=r=44100:cl=mono",
|
357 |
+
"-t", f"{duration:.2f}", "-q:a","9","-acodec","libmp3lame",
|
358 |
+
out_path,"-y"
|
359 |
], check=True)
|
|
|
360 |
|
361 |
+
# ---------------- Runway Video Generation ----------------
|
362 |
+
def runway_generate_clip(model: str, prompt_image: str, text_prompt: str,
|
363 |
+
duration: int, ratio: str, max_wait=360) -> str:
|
364 |
try:
|
365 |
task = runway_client.image_to_video.create(
|
366 |
+
model=model,
|
367 |
prompt_image=prompt_image,
|
368 |
prompt_text=text_prompt,
|
369 |
duration=duration,
|
370 |
ratio=ratio
|
371 |
)
|
372 |
except Exception as e:
|
373 |
+
raise gr.Error(f"Runway task creation failed: {e}")
|
374 |
|
375 |
+
waited=0; interval=5
|
|
|
|
|
|
|
376 |
while True:
|
377 |
task = runway_client.tasks.retrieve(id=task.id)
|
378 |
+
status = getattr(task,"status",None)
|
379 |
+
if status=="SUCCEEDED":
|
380 |
break
|
381 |
+
if status=="FAILED":
|
382 |
raise gr.Error(f"Runway generation failed: {getattr(task,'error','Unknown error')}")
|
383 |
+
time.sleep(interval); waited+=interval
|
384 |
+
if waited>=max_wait:
|
385 |
+
raise gr.Error("Runway generation timeout.")
|
386 |
+
outputs = getattr(task,"output",None)
|
387 |
+
if not outputs or not isinstance(outputs,list):
|
|
|
|
|
388 |
raise gr.Error("Runway returned no outputs.")
|
389 |
video_url = outputs[0]
|
390 |
+
clip_path=f"runway_clip_{uid()}.mp4"
|
391 |
+
with httpx.stream("GET", video_url, timeout=240) as r:
|
392 |
+
r.raise_for_status()
|
393 |
+
with open(clip_path,"wb") as f:
|
394 |
+
for chunk in r.iter_bytes():
|
|
|
395 |
f.write(chunk)
|
396 |
return clip_path
|
397 |
|
398 |
+
# ---------------- Sharpness Heuristic ----------------
|
399 |
+
def clip_edge_density(path: str) -> float:
|
400 |
+
try:
|
401 |
+
import cv2 # optional optimization; if unavailable fallback to PIL
|
402 |
+
cap = cv2.VideoCapture(path)
|
403 |
+
if not cap.isOpened(): return 1.0
|
404 |
+
frames=0; acc=0.0
|
405 |
+
while frames<10:
|
406 |
+
ret, frame = cap.read()
|
407 |
+
if not ret: break
|
408 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
409 |
+
edges = cv2.Canny(gray,100,200)
|
410 |
+
acc += edges.mean()/255.0
|
411 |
+
frames+=1
|
412 |
+
cap.release()
|
413 |
+
return acc/max(frames,1)
|
414 |
+
except Exception:
|
415 |
+
# PIL fallback (single frame)
|
416 |
+
try:
|
417 |
+
# extract a frame via ffmpeg
|
418 |
+
tmp = f"frame_{uid()}.png"
|
419 |
+
subprocess.run(["ffmpeg","-i",path,"-vf","scale=320:-1","-vframes","1",tmp,"-y"],
|
420 |
+
stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True)
|
421 |
+
img = Image.open(tmp).convert("L")
|
422 |
+
arr = np.array(img.filter(ImageFilter.FIND_EDGES))
|
423 |
+
val = arr.mean()/255.0
|
424 |
+
os.remove(tmp)
|
425 |
+
return val
|
426 |
+
except Exception:
|
427 |
+
return 1.0 # assume ok if cannot measure
|
428 |
+
|
429 |
+
# ---------------- Concatenate & Mux ----------------
|
430 |
+
def concat_and_mux(video_paths: List[str], audio_path: str, out_path: str):
|
431 |
+
list_file=f"concat_{uid()}.txt"
|
432 |
+
with open(list_file,"w") as lf:
|
433 |
for p in video_paths:
|
434 |
lf.write(f"file '{p}'\n")
|
435 |
+
combined=f"combined_{uid()}.mp4"
|
436 |
subprocess.run([
|
437 |
+
"ffmpeg","-f","concat","-safe","0","-i",list_file,
|
438 |
+
"-c","copy",combined,"-y"
|
439 |
+
],check=True)
|
440 |
subprocess.run([
|
441 |
+
"ffmpeg","-i",combined,"-i",audio_path,
|
442 |
+
"-c:v","copy","-c:a","aac","-shortest",out_path,"-y"
|
443 |
+
],check=True)
|
444 |
+
for p in (list_file,combined):
|
445 |
+
try: os.remove(p)
|
446 |
+
except OSError: pass
|
447 |
+
|
448 |
+
# ---------------- Global Style ----------------
|
449 |
+
GLOBAL_STYLE = "cinematic, cohesive composition, natural volumetric light, filmic color grade, gentle motion, high detail"
|
450 |
+
|
451 |
+
def build_scene_prompt(sc: Dict[str,str]) -> str:
|
452 |
+
base = f"{sc['subject']} {sc['action']}, {sc['camera']}, {sc['lighting']}, {sc['mood']}, {sc['style']}"
|
453 |
+
merged = sc.get("prompt") or base
|
454 |
+
return f"{merged}. {GLOBAL_STYLE}"
|
455 |
+
|
456 |
+
# ---------------- Main Pipeline ----------------
|
457 |
+
def generate_video(
|
458 |
topic: str,
|
459 |
+
keyframes: list, # list of file paths
|
460 |
scene_count: int,
|
461 |
clip_duration: int,
|
462 |
ratio: str,
|
463 |
+
quality_mode: bool,
|
464 |
voice_choice: Optional[str],
|
465 |
model_id: str,
|
466 |
stability: float,
|
467 |
similarity: float,
|
468 |
style: float,
|
469 |
speaker_boost: bool,
|
470 |
+
streaming_tts: bool,
|
471 |
progress=gr.Progress(track_tqdm=True)
|
472 |
) -> str:
|
473 |
+
job=uid()
|
474 |
+
log.info(f"[JOB {job}] topic='{topic}'")
|
475 |
+
temp_files=[]
|
476 |
try:
|
477 |
+
if not topic.strip():
|
478 |
+
raise gr.Error("Please enter a topic.")
|
479 |
+
scene_count = max(1,min(MAX_SCENES,scene_count))
|
480 |
if clip_duration not in ALLOWED_DURATIONS:
|
481 |
+
clip_duration=5
|
482 |
+
# choose model
|
483 |
+
runway_model = "gen4" if quality_mode else "gen4_turbo"
|
484 |
|
485 |
+
progress(0.05, desc="π Researching...")
|
486 |
facts = research_topic(topic)
|
487 |
|
488 |
+
progress(0.15, desc="π§ Scripting (Gemini)...")
|
489 |
script = gemini_script(topic, facts, scene_count)
|
490 |
narration = script["narration"]
|
491 |
+
scene_objs = script["scenes"]
|
492 |
|
493 |
+
progress(0.30, desc="ποΈ Narration (TTS)...")
|
494 |
+
audio_path=f"narration_{job}.mp3"
|
495 |
temp_files.append(audio_path)
|
496 |
|
497 |
+
voice_id=""
|
498 |
+
if voice_choice and "|" in voice_choice:
|
499 |
+
voice_id = voice_choice.split("|",1)[1]
|
|
|
|
|
500 |
|
501 |
+
tts_ok=False
|
502 |
+
if ELEVEN_KEY and voice_id:
|
503 |
+
tts_ok = tts_elevenlabs(
|
504 |
+
narration, voice_id, model_id,
|
505 |
+
stability, similarity, style, speaker_boost,
|
506 |
+
streaming_tts, audio_path
|
|
|
|
|
|
|
|
|
|
|
|
|
507 |
)
|
508 |
+
if not tts_ok and RUNWAY_AUDIO_FALLBACK:
|
509 |
+
tts_ok = runway_generate_audio(narration, audio_path)
|
510 |
+
if not tts_ok:
|
511 |
+
silent_track(narration, audio_path)
|
512 |
+
|
513 |
+
progress(0.40, desc="πΌοΈ Preparing keyframes...")
|
514 |
+
# Handle multi-keyframe: if multiple, cycle through them; else create placeholder
|
515 |
+
loaded_keyframes=[]
|
516 |
+
if keyframes:
|
517 |
+
for fp in keyframes:
|
518 |
+
try:
|
519 |
+
img=Image.open(fp).convert("RGB")
|
520 |
+
loaded_keyframes.append(img)
|
521 |
+
except Exception:
|
522 |
+
pass
|
523 |
+
if not loaded_keyframes:
|
524 |
+
placeholder = generate_placeholder_image(topic)
|
525 |
+
temp_files.append(placeholder)
|
526 |
+
loaded_keyframes=[Image.open(placeholder).convert("RGB")]
|
527 |
+
|
528 |
+
# Ratio handling
|
529 |
+
if ratio not in SUPPORTED_RATIOS:
|
530 |
+
ratio_choice = closest_supported_ratio(*loaded_keyframes[0].size)
|
531 |
else:
|
532 |
+
ratio_choice = ratio
|
533 |
+
processed_images=[]
|
534 |
+
for img in loaded_keyframes:
|
535 |
+
proc = crop_to_ratio(img, ratio_choice)
|
536 |
+
processed_images.append(proc)
|
537 |
+
|
538 |
+
# Convert processed images to data URIs
|
539 |
+
data_uris=[]
|
540 |
+
for img in processed_images:
|
541 |
+
b = bytes()
|
542 |
+
from io import BytesIO
|
543 |
+
buf=BytesIO()
|
544 |
+
img.save(buf, format="PNG")
|
545 |
+
b=buf.getvalue()
|
546 |
+
data_uris.append("data:image/png;base64,"+base64.b64encode(b).decode("utf-8"))
|
547 |
+
|
548 |
+
video_clips=[]
|
549 |
+
for idx, sc in enumerate(scene_objs, start=1):
|
550 |
+
progress(0.40 + 0.45*idx/scene_count,
|
551 |
+
desc=f"π¬ Scene {idx}/{scene_count}...")
|
552 |
+
img_uri = data_uris[(idx-1) % len(data_uris)]
|
553 |
+
prompt_text = build_scene_prompt(sc)
|
554 |
+
clip_path = runway_generate_clip(
|
555 |
+
model=runway_model,
|
556 |
+
prompt_image=img_uri,
|
557 |
+
text_prompt=prompt_text,
|
558 |
+
duration=clip_duration,
|
559 |
+
ratio=ratio_choice
|
560 |
+
)
|
561 |
+
video_clips.append(clip_path); temp_files.append(clip_path)
|
562 |
+
|
563 |
+
# Sharpness check
|
564 |
+
sharp = clip_edge_density(clip_path)
|
565 |
+
if sharp < SHARPNESS_MIN:
|
566 |
+
log.info(f"Scene {idx} low sharpness ({sharp:.4f}) - retrying with detail boost")
|
567 |
+
retry_prompt = prompt_text + ", " + RETRY_DETAIL_SUFFIX
|
568 |
+
retry_clip = runway_generate_clip(
|
569 |
+
model=runway_model,
|
570 |
+
prompt_image=img_uri,
|
571 |
text_prompt=retry_prompt,
|
572 |
duration=clip_duration,
|
573 |
+
ratio=ratio_choice
|
574 |
)
|
575 |
+
video_clips[-1]=retry_clip
|
576 |
+
temp_files.append(retry_clip)
|
577 |
|
578 |
+
progress(0.92, desc="π§΅ Stitching & muxing...")
|
579 |
+
final_out=f"{sanitize_filename(topic)}_{job}.mp4"
|
580 |
concat_and_mux(video_clips, audio_path, final_out)
|
581 |
|
582 |
+
progress(1.0, desc="β
Complete")
|
583 |
+
log.info(f"[JOB {job}] done -> {final_out}")
|
584 |
return final_out
|
585 |
|
586 |
except Exception as e:
|
587 |
+
log.error(f"[JOB {job}] FAILED: {e}", exc_info=True)
|
588 |
+
raise gr.Error(f"Pipeline error: {e}")
|
589 |
finally:
|
590 |
+
# cleanup intermediates (keep final video)
|
591 |
for p in temp_files:
|
592 |
try:
|
593 |
if os.path.exists(p):
|
|
|
595 |
except OSError:
|
596 |
pass
|
597 |
|
598 |
+
# ---------------- UI Helpers ----------------
|
599 |
+
_cached_voices: List[str] = []
|
|
|
|
|
600 |
|
601 |
+
def refresh_voices():
|
602 |
+
global _cached_voices
|
603 |
+
voices = fetch_voices_paginated()
|
604 |
+
_cached_voices = [f"{v['name']}|{v['id']}" for v in voices]
|
605 |
+
return gr.update(choices=_cached_voices)
|
606 |
+
|
607 |
+
# ---------------- Gradio Interface ----------------
|
608 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
609 |
+
gr.Markdown("# π¬ AI Video Studio (Gen-4 / Turbo + Gemini + ElevenLabs + Runway Audio)")
|
610 |
gr.Markdown(
|
611 |
+
"Iterate quickly with Turbo, then switch to Quality Mode for final fidelity. "
|
612 |
+
"Upload multiple keyframes to improve subject consistency."
|
613 |
)
|
614 |
|
615 |
with gr.Row():
|
616 |
+
topic = gr.Textbox(label="Video Topic", placeholder="e.g. The history of coffee", scale=3)
|
617 |
+
keyframes = gr.Files(label="Optional Keyframe Images (1β4)")
|
618 |
|
619 |
with gr.Row():
|
620 |
+
scene_count = gr.Slider(1, MAX_SCENES, value=DEFAULT_SCENES, step=1, label="Scenes")
|
621 |
+
clip_duration = gr.Radio(choices=sorted(list(ALLOWED_DURATIONS)), value=5, label="Seconds/Scene")
|
622 |
+
ratio = gr.Dropdown(choices=sorted(list(SUPPORTED_RATIOS)), value="1280:720", label="Aspect Ratio")
|
623 |
+
quality_mode = gr.Checkbox(label="Quality Mode (use gen4 instead of gen4_turbo)", value=False)
|
|
|
|
|
|
|
624 |
|
625 |
+
gr.Markdown("### Narration (Primary: ElevenLabs, Fallback: Runway Audio / Silence)")
|
626 |
with gr.Row():
|
627 |
+
refresh_btn = gr.Button("π Refresh Voices")
|
628 |
+
voices_dd = gr.Dropdown(choices=[], label="ElevenLabs Voice (Name|ID)")
|
629 |
model_dd = gr.Dropdown(
|
630 |
+
choices=["eleven_turbo_v2_5","eleven_multilingual_v2","eleven_flash_v2_5","eleven_monolingual_v1"],
|
|
|
|
|
|
|
|
|
|
|
631 |
value="eleven_turbo_v2_5",
|
632 |
label="ElevenLabs Model"
|
633 |
)
|
634 |
streaming_chk = gr.Checkbox(label="Streaming TTS", value=False)
|
635 |
|
636 |
with gr.Row():
|
637 |
+
stability = gr.Slider(0,1,value=0.55,step=0.01,label="Stability")
|
638 |
+
similarity = gr.Slider(0,1,value=0.80,step=0.01,label="Similarity")
|
639 |
+
style = gr.Slider(0,1,value=0.25,step=0.01,label="Style")
|
640 |
speaker_boost = gr.Checkbox(label="Speaker Boost", value=True)
|
641 |
|
642 |
generate_btn = gr.Button("π Generate Video", variant="primary")
|
643 |
output_video = gr.Video(label="Final Video")
|
644 |
|
645 |
+
refresh_btn.click(fn=refresh_voices, outputs=voices_dd)
|
|
|
|
|
|
|
646 |
|
647 |
generate_btn.click(
|
648 |
+
fn=generate_video,
|
649 |
inputs=[
|
650 |
+
topic, keyframes, scene_count, clip_duration, ratio,
|
651 |
+
quality_mode, voices_dd, model_dd, stability, similarity,
|
652 |
+
style, speaker_boost, streaming_chk
|
653 |
],
|
654 |
outputs=output_video
|
655 |
)
|
656 |
|
657 |
+
gr.Markdown(
|
658 |
+
"### Tips\n"
|
659 |
+
"- Use multiple high-quality keyframes (consistent character & environment).\n"
|
660 |
+
"- Refine camera verbs (slow dolly in, handheld pan, aerial sweep) & lighting adjectives.\n"
|
661 |
+
"- Toggle Quality Mode only when you like the blocking to save credits.\n"
|
662 |
+
"- Add emotional descriptors directly in narration text for richer delivery."
|
663 |
+
)
|
664 |
|
665 |
+
if __name__ == '__main__':
|
666 |
demo.launch()
|