Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,12 +12,14 @@ import gradio as gr
|
|
12 |
from PIL import Image, ImageDraw, ImageFont
|
13 |
|
14 |
# External SDKs
|
15 |
-
import google.generativeai as genai
|
16 |
-
from tavily import TavilyClient
|
17 |
-
from runwayml import RunwayML, TaskFailedError
|
18 |
-
from elevenlabs import ElevenLabs,
|
19 |
-
|
20 |
-
|
|
|
|
|
21 |
logging.basicConfig(
|
22 |
level=logging.INFO,
|
23 |
format="[%(levelname)s %(asctime)s] %(message)s",
|
@@ -25,113 +27,113 @@ logging.basicConfig(
|
|
25 |
)
|
26 |
log = logging.getLogger("ai_video_studio")
|
27 |
|
28 |
-
# ---------------- Configuration
|
29 |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
30 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
31 |
RUNWAY_KEY = os.getenv("RUNWAY_API_KEY") or os.getenv("RUNWAYML_API_SECRET")
|
32 |
-
ELEVEN_KEY = os.getenv("ELEVENLABS_API_KEY") or os.getenv("
|
33 |
|
34 |
-
|
35 |
"GEMINI_API_KEY": GEMINI_API_KEY,
|
36 |
"TAVILY_API_KEY": TAVILY_API_KEY,
|
37 |
-
"RUNWAY_API_KEY
|
38 |
-
}
|
39 |
-
missing = [k for k, v in REQUIRED.items() if not v]
|
40 |
if missing:
|
41 |
raise RuntimeError(f"Missing required API keys: {', '.join(missing)}")
|
42 |
|
43 |
-
# ElevenLabs is optional; if absent we fall back to mock audio.
|
44 |
-
ELEVEN_AVAILABLE = bool(ELEVEN_KEY)
|
45 |
-
|
46 |
-
# Configure clients
|
47 |
genai.configure(api_key=GEMINI_API_KEY)
|
48 |
tavily_client = TavilyClient(api_key=TAVILY_API_KEY)
|
49 |
runway_client = RunwayML(api_key=RUNWAY_KEY)
|
50 |
-
eleven_client: Optional[ElevenLabs] =
|
|
|
|
|
51 |
|
52 |
# ---------------- Constants ----------------
|
53 |
DEFAULT_SCENES = 4
|
54 |
MAX_SCENES = 8
|
55 |
-
|
56 |
-
|
57 |
PLACEHOLDER_BG = (18, 18, 22)
|
58 |
PLACEHOLDER_FG = (239, 239, 245)
|
59 |
FONT_CANDIDATES = [
|
60 |
"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
|
61 |
"/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"
|
62 |
]
|
63 |
-
GLOBAL_STYLE = (
|
64 |
-
"Cinematic, natural volumetric light, subtle camera motion, high coherence, 4k texture detail"
|
65 |
-
)
|
66 |
|
67 |
-
# ---------------- Utility
|
68 |
def uid() -> str:
|
69 |
return f"{int(time.time())}_{random.randint(1000, 9999)}"
|
70 |
|
71 |
def sanitize_filename(name: str) -> str:
|
72 |
-
safe = "".join(c for c in name if c.isalnum() or c in ("-", "_"))[:
|
73 |
return safe or "video"
|
74 |
|
75 |
def generate_placeholder_image(topic: str, width: int = 768, height: int = 432) -> str:
|
|
|
76 |
img = Image.new("RGB", (width, height), PLACEHOLDER_BG)
|
77 |
draw = ImageDraw.Draw(img)
|
78 |
font = None
|
79 |
for path in FONT_CANDIDATES:
|
80 |
if Path(path).exists():
|
81 |
try:
|
82 |
-
font = ImageFont.truetype(path,
|
83 |
break
|
84 |
except Exception:
|
85 |
pass
|
86 |
if font is None:
|
87 |
font = ImageFont.load_default()
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
test = " ".join(cur + [w])
|
95 |
if len(test) > max_chars:
|
96 |
-
|
97 |
-
|
98 |
else:
|
99 |
-
|
100 |
-
if
|
101 |
-
|
102 |
|
103 |
total_h = 0
|
104 |
-
|
|
|
105 |
bbox = draw.textbbox((0, 0), ln, font=font)
|
106 |
-
|
|
|
|
|
107 |
y = (height - total_h) // 2
|
108 |
-
for ln in
|
109 |
bbox = draw.textbbox((0, 0), ln, font=font)
|
110 |
w = bbox[2] - bbox[0]
|
111 |
x = (width - w) // 2
|
112 |
draw.text((x, y), ln, fill=PLACEHOLDER_FG, font=font)
|
113 |
-
y +=
|
114 |
|
115 |
out_path = f"placeholder_{uid()}.png"
|
116 |
img.save(out_path)
|
117 |
return out_path
|
118 |
|
119 |
def research_topic(topic: str) -> str:
|
|
|
120 |
try:
|
121 |
results = tavily_client.search(
|
122 |
query=f"Key facts and interesting points about {topic}",
|
123 |
search_depth="basic"
|
124 |
)
|
125 |
if results and "results" in results:
|
126 |
-
return "
|
127 |
-
".
|
128 |
-
|
|
|
129 |
)
|
130 |
except Exception as e:
|
131 |
log.warning(f"Tavily failed: {e}")
|
132 |
return "No supplemental research facts available."
|
133 |
|
134 |
def gemini_script(topic: str, facts: str, scene_count: int) -> Dict[str, Any]:
|
|
|
135 |
prompt = f"""
|
136 |
You are a creative director for short-form educational / promotional videos.
|
137 |
|
@@ -140,117 +142,151 @@ Topic: {topic}
|
|
140 |
Supplemental Facts:
|
141 |
{facts}
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
"
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
"""
|
149 |
model = genai.GenerativeModel("gemini-1.5-flash")
|
150 |
response = model.generate_content(prompt)
|
151 |
raw = (response.text or "").strip()
|
|
|
152 |
if raw.startswith("```"):
|
153 |
-
|
|
|
|
|
|
|
|
|
154 |
data = None
|
155 |
try:
|
156 |
data = json.loads(raw)
|
157 |
except json.JSONDecodeError:
|
158 |
-
start
|
|
|
159 |
if start != -1 and end != -1:
|
160 |
try:
|
161 |
data = json.loads(raw[start:end + 1])
|
162 |
except Exception:
|
163 |
pass
|
164 |
if not isinstance(data, dict):
|
165 |
-
raise gr.Error("Gemini did not return valid JSON
|
|
|
166 |
narration = data.get("narration_script")
|
167 |
scenes = data.get("scene_prompts")
|
|
|
168 |
if isinstance(narration, list):
|
169 |
narration = " ".join(map(str, narration))
|
170 |
if not isinstance(narration, str) or not narration.strip():
|
171 |
raise gr.Error("Invalid narration_script returned.")
|
172 |
narration = narration.strip()
|
|
|
173 |
if not isinstance(scenes, list):
|
174 |
-
raise gr.Error("scene_prompts
|
175 |
scenes = [str(s).strip() for s in scenes if str(s).strip()]
|
176 |
if len(scenes) != scene_count:
|
|
|
177 |
while len(scenes) < scene_count:
|
178 |
-
scenes.append(
|
179 |
scenes = scenes[:scene_count]
|
180 |
-
return {"narration": narration, "scenes": scenes}
|
181 |
-
|
182 |
-
def ensure_duration(narration: str) -> float:
|
183 |
-
return max(2.0, min(300.0, len(narration.split()) / WORDS_PER_SEC))
|
184 |
-
|
185 |
-
def mock_audio(narration: str, out_path: str) -> float:
|
186 |
-
duration = ensure_duration(narration)
|
187 |
-
subprocess.run([
|
188 |
-
"ffmpeg", "-f", "lavfi", "-i", "anullsrc=r=44100:cl=mono",
|
189 |
-
"-t", f"{duration:.2f}", "-q:a", "9", "-acodec", "libmp3lame", out_path, "-y"
|
190 |
-
], check=True)
|
191 |
-
return duration
|
192 |
|
193 |
-
|
194 |
-
if not ELEVEN_AVAILABLE:
|
195 |
-
raise gr.Error("ElevenLabs API key not configured.")
|
196 |
-
# Streaming or non-streaming generation
|
197 |
-
if use_stream:
|
198 |
-
# Streaming: write chunks as they arrive
|
199 |
-
with open(out_path, "wb") as f:
|
200 |
-
for chunk in eleven_client.text_to_speech.convert(
|
201 |
-
voice_id=voice_id,
|
202 |
-
optimize_streaming_latency=optimize_streaming_latency,
|
203 |
-
model_id=model,
|
204 |
-
output_format="mp3_44100_128",
|
205 |
-
text=narration,
|
206 |
-
voice_settings=VoiceSettings(
|
207 |
-
stability=0.5,
|
208 |
-
similarity_boost=0.8,
|
209 |
-
style=0.3,
|
210 |
-
use_speaker_boost=True,
|
211 |
-
),
|
212 |
-
stream=True,
|
213 |
-
):
|
214 |
-
if isinstance(chunk, bytes):
|
215 |
-
f.write(chunk)
|
216 |
-
else:
|
217 |
-
audio = eleven_client.text_to_speech.convert(
|
218 |
-
voice_id=voice_id,
|
219 |
-
model_id=model,
|
220 |
-
output_format="mp3_44100_128",
|
221 |
-
text=narration,
|
222 |
-
voice_settings=VoiceSettings(
|
223 |
-
stability=0.5,
|
224 |
-
similarity_boost=0.8,
|
225 |
-
style=0.3,
|
226 |
-
use_speaker_boost=True,
|
227 |
-
),
|
228 |
-
)
|
229 |
-
with open(out_path, "wb") as f:
|
230 |
-
f.write(audio)
|
231 |
-
# Roughly compute duration from word count; could probe with ffprobe for exact.
|
232 |
-
return ensure_duration(narration)
|
233 |
|
|
|
234 |
def list_elevenlabs_voices() -> List[Dict[str, str]]:
|
235 |
-
if
|
|
|
236 |
return []
|
237 |
try:
|
|
|
238 |
voices = eleven_client.voices.get_all()
|
239 |
-
|
|
|
240 |
for v in voices.voices:
|
241 |
-
|
242 |
-
return
|
243 |
except Exception as e:
|
244 |
-
log.warning(f"Failed to list voices: {e}")
|
245 |
return []
|
246 |
|
247 |
-
def
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
|
|
253 |
def runway_generate_clip(prompt_image: str, text_prompt: str, duration: int, ratio: str) -> str:
|
|
|
254 |
try:
|
255 |
task = runway_client.image_to_video.create(
|
256 |
model="gen4_turbo",
|
@@ -282,9 +318,8 @@ def runway_generate_clip(prompt_image: str, text_prompt: str, duration: int, rat
|
|
282 |
raise gr.Error("Runway returned no outputs.")
|
283 |
video_url = outputs[0]
|
284 |
|
285 |
-
import httpx
|
286 |
clip_path = f"runway_clip_{uid()}.mp4"
|
287 |
-
with httpx.stream("GET", video_url, timeout=
|
288 |
resp.raise_for_status()
|
289 |
with open(clip_path, "wb") as f:
|
290 |
for chunk in resp.iter_bytes():
|
@@ -295,40 +330,41 @@ def concat_and_mux(video_paths: List[str], audio_path: str, out_path: str) -> No
|
|
295 |
list_file = f"concat_{uid()}.txt"
|
296 |
with open(list_file, "w") as lf:
|
297 |
for p in video_paths:
|
298 |
-
lf.write(f"file '{p}'
|
299 |
-
")
|
300 |
temp_concat = f"combined_{uid()}.mp4"
|
301 |
subprocess.run([
|
302 |
-
"ffmpeg", "-f", "concat", "-safe", "0", "-i", list_file,
|
|
|
303 |
], check=True)
|
304 |
subprocess.run([
|
305 |
-
"ffmpeg", "-i", temp_concat, "-i", audio_path,
|
|
|
306 |
], check=True)
|
307 |
for p in (list_file, temp_concat):
|
308 |
-
try:
|
309 |
-
|
310 |
-
except OSError:
|
311 |
-
pass
|
312 |
|
313 |
-
def enhance_scene_prompt(base: str) -> str:
|
314 |
-
return f"{base}. {
|
315 |
|
316 |
-
# ----------------
|
317 |
def generate_video_from_topic(
|
318 |
topic: str,
|
319 |
-
|
320 |
scene_count: int,
|
321 |
clip_duration: int,
|
322 |
ratio: str,
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
|
|
|
|
328 |
progress=gr.Progress(track_tqdm=True)
|
329 |
) -> str:
|
330 |
job = uid()
|
331 |
-
log.info(f"[AI-STUDIO]
|
332 |
temp_files: List[str] = []
|
333 |
try:
|
334 |
if not topic or not topic.strip():
|
@@ -345,65 +381,79 @@ def generate_video_from_topic(
|
|
345 |
narration = script["narration"]
|
346 |
scenes = script["scenes"]
|
347 |
|
348 |
-
progress(0.30, desc="ποΈ Generating narration
|
349 |
-
audio_path = f"
|
350 |
temp_files.append(audio_path)
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
|
|
|
|
|
|
|
|
|
|
359 |
)
|
360 |
-
else:
|
361 |
-
mock_audio(narration, audio_path)
|
362 |
|
363 |
-
|
364 |
-
|
365 |
-
|
|
|
|
|
|
|
|
|
366 |
else:
|
367 |
prompt_image_path = generate_placeholder_image(topic)
|
368 |
temp_files.append(prompt_image_path)
|
369 |
-
|
|
|
|
|
370 |
|
|
|
371 |
video_clips: List[str] = []
|
|
|
372 |
for idx, base_prompt in enumerate(scenes, start=1):
|
373 |
-
progress(0.40 +
|
374 |
-
|
|
|
375 |
try:
|
376 |
clip_path = runway_generate_clip(
|
377 |
-
prompt_image=
|
378 |
text_prompt=full_prompt,
|
379 |
duration=clip_duration,
|
380 |
ratio=ratio
|
381 |
)
|
|
|
|
|
382 |
except Exception as e:
|
383 |
-
log.error(f"Scene {idx} failed: {e}
|
384 |
-
retry_prompt = full_prompt + " --
|
385 |
clip_path = runway_generate_clip(
|
386 |
-
prompt_image=
|
387 |
text_prompt=retry_prompt,
|
388 |
duration=clip_duration,
|
389 |
ratio=ratio
|
390 |
)
|
391 |
-
|
392 |
-
|
393 |
|
394 |
progress(0.92, desc="π§΅ Stitching scenes...")
|
395 |
final_out = f"{sanitize_filename(topic)}_{job}.mp4"
|
396 |
concat_and_mux(video_clips, audio_path, final_out)
|
397 |
|
398 |
progress(1.0, desc="β
Done!")
|
399 |
-
log.info(f"[AI-STUDIO] Job {job}
|
400 |
return final_out
|
401 |
|
402 |
except Exception as e:
|
403 |
-
log.error(f"[AI-STUDIO]
|
404 |
raise gr.Error(f"An error occurred: {e}")
|
405 |
finally:
|
406 |
-
# Clean
|
407 |
for p in temp_files:
|
408 |
try:
|
409 |
if os.path.exists(p):
|
@@ -411,75 +461,71 @@ def generate_video_from_topic(
|
|
411 |
except OSError:
|
412 |
pass
|
413 |
|
414 |
-
# ----------------
|
415 |
-
def
|
416 |
voices = list_elevenlabs_voices()
|
417 |
-
if
|
418 |
-
return ["eleven_monolingual_v1"] # fallback placeholder id name pattern
|
419 |
-
return [f"{v['name']}|{v['id']}" for v in voices]
|
420 |
-
|
421 |
-
VOICE_CHOICES = get_voice_choices()
|
422 |
-
DEFAULT_VOICE = VOICE_CHOICES[0] if VOICE_CHOICES else "Rachel|21m00Tcm4TlvDq8ikWAM" # Example default voice id pattern
|
423 |
|
424 |
# ---------------- Gradio UI ----------------
|
425 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
426 |
gr.Markdown("# π¬ AI Video Studio (Runway Gen-4 Turbo + Gemini + ElevenLabs)")
|
427 |
gr.Markdown(
|
428 |
-
"
|
|
|
429 |
)
|
430 |
|
431 |
with gr.Row():
|
432 |
topic = gr.Textbox(label="Video Topic", placeholder="e.g., The history of coffee", scale=3)
|
433 |
keyframe = gr.Image(type="filepath", label="Optional Keyframe (Image)", scale=2)
|
434 |
|
435 |
-
with gr.Accordion("Narration Settings (ElevenLabs)", open=False):
|
436 |
-
use_eleven = gr.Checkbox(value=ELEVEN_AVAILABLE, label="Use ElevenLabs (falls back to mock if unchecked or unavailable)")
|
437 |
-
voice_select = gr.Dropdown(choices=VOICE_CHOICES, value=DEFAULT_VOICE, label="Voice (Name|ID)")
|
438 |
-
eleven_model = gr.Textbox(value="eleven_turbo_v2_5", label="ElevenLabs Model ID")
|
439 |
-
streaming = gr.Checkbox(value=True, label="Stream TTS (lower latency)")
|
440 |
-
optimize_latency = gr.Slider(0, 4, value=0, step=1, label="Optimize Streaming Latency (0=off, higher=more aggressive)")
|
441 |
-
|
442 |
with gr.Row():
|
443 |
scene_count = gr.Slider(1, MAX_SCENES, value=DEFAULT_SCENES, step=1, label="Number of Scenes")
|
444 |
duration = gr.Radio(choices=sorted(list(ALLOWED_DURATIONS)), value=5, label="Seconds per Scene")
|
445 |
-
ratio = gr.Dropdown(choices=["1280:720", "1920:1080", "1080:1920", "1024:1024"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
|
447 |
generate_btn = gr.Button("π Generate Video", variant="primary")
|
448 |
output_video = gr.Video(label="Final Video")
|
449 |
|
450 |
-
def
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
def wrapper(topic, keyframe, scene_count, duration, ratio, use_eleven, voice_combo, eleven_model, streaming, optimize_latency):
|
456 |
-
voice_id = _parse_voice(voice_combo)
|
457 |
-
return generate_video_from_topic(
|
458 |
-
topic=topic,
|
459 |
-
keyframe_image=keyframe,
|
460 |
-
scene_count=scene_count,
|
461 |
-
clip_duration=int(duration),
|
462 |
-
ratio=ratio,
|
463 |
-
use_eleven=use_eleven,
|
464 |
-
eleven_voice=voice_id,
|
465 |
-
eleven_model=eleven_model.strip() or "eleven_turbo_v2_5",
|
466 |
-
streaming=streaming,
|
467 |
-
optimize_latency=int(optimize_latency),
|
468 |
-
)
|
469 |
|
470 |
generate_btn.click(
|
471 |
-
fn=
|
472 |
-
inputs=[
|
|
|
|
|
|
|
|
|
473 |
outputs=output_video
|
474 |
)
|
475 |
|
476 |
-
gr.Markdown(""
|
477 |
-
|
478 |
-
-
|
479 |
-
-
|
480 |
-
- ElevenLabs: if you get 401 errors, verify the API key and voice ID. For new voices, refresh the Space (reload) to repopulate the list.
|
481 |
-
- Use 5s scenes for faster iteration; switch to 10s for final renders.
|
482 |
-
""")
|
483 |
|
484 |
if __name__ == "__main__":
|
485 |
demo.launch()
|
|
|
12 |
from PIL import Image, ImageDraw, ImageFont
|
13 |
|
14 |
# External SDKs
|
15 |
+
import google.generativeai as genai # Gemini
|
16 |
+
from tavily import TavilyClient # Research enrichment
|
17 |
+
from runwayml import RunwayML, TaskFailedError # Runway SDK
|
18 |
+
from elevenlabs import ElevenLabs, APIError # ElevenLabs TTS (pip install elevenlabs)
|
19 |
+
import httpx
|
20 |
+
import base64
|
21 |
+
|
22 |
+
# ---------------- Logging ----------------
|
23 |
logging.basicConfig(
|
24 |
level=logging.INFO,
|
25 |
format="[%(levelname)s %(asctime)s] %(message)s",
|
|
|
27 |
)
|
28 |
log = logging.getLogger("ai_video_studio")
|
29 |
|
30 |
+
# ---------------- Configuration / Keys ----------------
|
31 |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
32 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
33 |
RUNWAY_KEY = os.getenv("RUNWAY_API_KEY") or os.getenv("RUNWAYML_API_SECRET")
|
34 |
+
ELEVEN_KEY = os.getenv("ELEVENLABS_API_KEY") or os.getenv("XI_API_KEY")
|
35 |
|
36 |
+
missing = [k for k, v in {
|
37 |
"GEMINI_API_KEY": GEMINI_API_KEY,
|
38 |
"TAVILY_API_KEY": TAVILY_API_KEY,
|
39 |
+
"RUNWAY_API_KEY": RUNWAY_KEY
|
40 |
+
}.items() if not v]
|
|
|
41 |
if missing:
|
42 |
raise RuntimeError(f"Missing required API keys: {', '.join(missing)}")
|
43 |
|
|
|
|
|
|
|
|
|
44 |
genai.configure(api_key=GEMINI_API_KEY)
|
45 |
tavily_client = TavilyClient(api_key=TAVILY_API_KEY)
|
46 |
runway_client = RunwayML(api_key=RUNWAY_KEY)
|
47 |
+
eleven_client: Optional[ElevenLabs] = None
|
48 |
+
if ELEVEN_KEY:
|
49 |
+
eleven_client = ElevenLabs(api_key=ELEVEN_KEY)
|
50 |
|
51 |
# ---------------- Constants ----------------
|
52 |
DEFAULT_SCENES = 4
|
53 |
MAX_SCENES = 8
|
54 |
+
ALLOWED_DURATIONS = {5, 10} # Runway Gen-4 supported lengths (seconds)
|
55 |
+
WORDS_PER_SEC = 2.5 # Heuristic for mock track
|
56 |
PLACEHOLDER_BG = (18, 18, 22)
|
57 |
PLACEHOLDER_FG = (239, 239, 245)
|
58 |
FONT_CANDIDATES = [
|
59 |
"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
|
60 |
"/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"
|
61 |
]
|
|
|
|
|
|
|
62 |
|
63 |
+
# ---------------- Utility ----------------
|
64 |
def uid() -> str:
|
65 |
return f"{int(time.time())}_{random.randint(1000, 9999)}"
|
66 |
|
67 |
def sanitize_filename(name: str) -> str:
|
68 |
+
safe = "".join(c for c in name if c.isalnum() or c in ("-", "_"))[:60]
|
69 |
return safe or "video"
|
70 |
|
71 |
def generate_placeholder_image(topic: str, width: int = 768, height: int = 432) -> str:
|
72 |
+
"""Create a simple PNG keyframe if user didn't upload one."""
|
73 |
img = Image.new("RGB", (width, height), PLACEHOLDER_BG)
|
74 |
draw = ImageDraw.Draw(img)
|
75 |
font = None
|
76 |
for path in FONT_CANDIDATES:
|
77 |
if Path(path).exists():
|
78 |
try:
|
79 |
+
font = ImageFont.truetype(path, 42)
|
80 |
break
|
81 |
except Exception:
|
82 |
pass
|
83 |
if font is None:
|
84 |
font = ImageFont.load_default()
|
85 |
|
86 |
+
max_chars = 24
|
87 |
+
wrapped: List[str] = []
|
88 |
+
line: List[str] = []
|
89 |
+
for w in topic.split():
|
90 |
+
test = " ".join(line + [w])
|
|
|
91 |
if len(test) > max_chars:
|
92 |
+
wrapped.append(" ".join(line))
|
93 |
+
line = [w]
|
94 |
else:
|
95 |
+
line.append(w)
|
96 |
+
if line:
|
97 |
+
wrapped.append(" ".join(line))
|
98 |
|
99 |
total_h = 0
|
100 |
+
line_metrics = []
|
101 |
+
for ln in wrapped:
|
102 |
bbox = draw.textbbox((0, 0), ln, font=font)
|
103 |
+
h = bbox[3] - bbox[1]
|
104 |
+
line_metrics.append((ln, h))
|
105 |
+
total_h += h + 10
|
106 |
y = (height - total_h) // 2
|
107 |
+
for ln, h in line_metrics:
|
108 |
bbox = draw.textbbox((0, 0), ln, font=font)
|
109 |
w = bbox[2] - bbox[0]
|
110 |
x = (width - w) // 2
|
111 |
draw.text((x, y), ln, fill=PLACEHOLDER_FG, font=font)
|
112 |
+
y += h + 10
|
113 |
|
114 |
out_path = f"placeholder_{uid()}.png"
|
115 |
img.save(out_path)
|
116 |
return out_path
|
117 |
|
118 |
def research_topic(topic: str) -> str:
|
119 |
+
"""Fetch supplemental facts; return safe fallback if API fails."""
|
120 |
try:
|
121 |
results = tavily_client.search(
|
122 |
query=f"Key facts and interesting points about {topic}",
|
123 |
search_depth="basic"
|
124 |
)
|
125 |
if results and "results" in results:
|
126 |
+
return "\n".join(
|
127 |
+
str(r.get("content", "")).strip()
|
128 |
+
for r in results["results"]
|
129 |
+
if r.get("content")
|
130 |
)
|
131 |
except Exception as e:
|
132 |
log.warning(f"Tavily failed: {e}")
|
133 |
return "No supplemental research facts available."
|
134 |
|
135 |
def gemini_script(topic: str, facts: str, scene_count: int) -> Dict[str, Any]:
|
136 |
+
"""Obtain narration + scene prompts as structured JSON from Gemini."""
|
137 |
prompt = f"""
|
138 |
You are a creative director for short-form educational / promotional videos.
|
139 |
|
|
|
142 |
Supplemental Facts:
|
143 |
{facts}
|
144 |
|
145 |
+
Return STRICT JSON:
|
146 |
+
{{
|
147 |
+
"narration_script": "<single cohesive narration>",
|
148 |
+
"scene_prompts": ["<scene 1>", ... (exactly {scene_count} total) ]
|
149 |
+
}}
|
150 |
+
|
151 |
+
Scene prompt requirements:
|
152 |
+
- <= 40 words
|
153 |
+
- Consistent main subject
|
154 |
+
- Include camera/movement term (e.g. "slow dolly in", "aerial sweep")
|
155 |
+
- Mention lighting/mood
|
156 |
+
NO markdown, NO extra commentary.
|
157 |
"""
|
158 |
model = genai.GenerativeModel("gemini-1.5-flash")
|
159 |
response = model.generate_content(prompt)
|
160 |
raw = (response.text or "").strip()
|
161 |
+
|
162 |
if raw.startswith("```"):
|
163 |
+
# strip code fences if present
|
164 |
+
raw = raw.strip("`")
|
165 |
+
if raw.lower().startswith("json"):
|
166 |
+
raw = raw[4:].strip()
|
167 |
+
|
168 |
data = None
|
169 |
try:
|
170 |
data = json.loads(raw)
|
171 |
except json.JSONDecodeError:
|
172 |
+
start = raw.find("{")
|
173 |
+
end = raw.rfind("}")
|
174 |
if start != -1 and end != -1:
|
175 |
try:
|
176 |
data = json.loads(raw[start:end + 1])
|
177 |
except Exception:
|
178 |
pass
|
179 |
if not isinstance(data, dict):
|
180 |
+
raise gr.Error("Gemini did not return valid JSON.")
|
181 |
+
|
182 |
narration = data.get("narration_script")
|
183 |
scenes = data.get("scene_prompts")
|
184 |
+
|
185 |
if isinstance(narration, list):
|
186 |
narration = " ".join(map(str, narration))
|
187 |
if not isinstance(narration, str) or not narration.strip():
|
188 |
raise gr.Error("Invalid narration_script returned.")
|
189 |
narration = narration.strip()
|
190 |
+
|
191 |
if not isinstance(scenes, list):
|
192 |
+
raise gr.Error("scene_prompts missing or not a list.")
|
193 |
scenes = [str(s).strip() for s in scenes if str(s).strip()]
|
194 |
if len(scenes) != scene_count:
|
195 |
+
# normalize length
|
196 |
while len(scenes) < scene_count:
|
197 |
+
scenes.append(f"Dynamic cinematic shot about {topic}")
|
198 |
scenes = scenes[:scene_count]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
+
return {"narration": narration, "scenes": scenes}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
+
# ---------------- ElevenLabs Integration ----------------
|
203 |
def list_elevenlabs_voices() -> List[Dict[str, str]]:
|
204 |
+
"""Fetch voices (name + id) if ElevenLabs key available."""
|
205 |
+
if not eleven_client:
|
206 |
return []
|
207 |
try:
|
208 |
+
# The SDK's voices list method (internally hits the list voices endpoint)
|
209 |
voices = eleven_client.voices.get_all()
|
210 |
+
# Normalize to simple dict
|
211 |
+
simplified = []
|
212 |
for v in voices.voices:
|
213 |
+
simplified.append({"id": v.voice_id, "name": v.name})
|
214 |
+
return simplified
|
215 |
except Exception as e:
|
216 |
+
log.warning(f"Failed to list ElevenLabs voices: {e}")
|
217 |
return []
|
218 |
|
219 |
+
def synthesize_narration_elevenlabs(
|
220 |
+
text: str,
|
221 |
+
voice_id: str,
|
222 |
+
model_id: str,
|
223 |
+
stability: float,
|
224 |
+
similarity: float,
|
225 |
+
style: float,
|
226 |
+
speaker_boost: bool,
|
227 |
+
streaming: bool,
|
228 |
+
out_path: str
|
229 |
+
) -> bool:
|
230 |
+
"""Return True on success; False triggers fallback."""
|
231 |
+
if not eleven_client:
|
232 |
+
return False
|
233 |
+
try:
|
234 |
+
# Bound parameters
|
235 |
+
stability = max(0.0, min(1.0, stability))
|
236 |
+
similarity = max(0.0, min(1.0, similarity))
|
237 |
+
style = max(0.0, min(1.0, style))
|
238 |
+
|
239 |
+
if streaming:
|
240 |
+
# Streaming synthesis (chunked)
|
241 |
+
with open(out_path, "wb") as f:
|
242 |
+
for chunk in eleven_client.text_to_speech.convert_as_stream(
|
243 |
+
voice_id=voice_id,
|
244 |
+
model_id=model_id,
|
245 |
+
text=text,
|
246 |
+
optimize_streaming_latency=3,
|
247 |
+
voice_settings={
|
248 |
+
"stability": stability,
|
249 |
+
"similarity_boost": similarity,
|
250 |
+
"style": style,
|
251 |
+
"use_speaker_boost": speaker_boost
|
252 |
+
}
|
253 |
+
):
|
254 |
+
f.write(chunk)
|
255 |
+
else:
|
256 |
+
# Standard synthesis (single request)
|
257 |
+
audio = eleven_client.text_to_speech.convert(
|
258 |
+
voice_id=voice_id,
|
259 |
+
model_id=model_id,
|
260 |
+
text=text,
|
261 |
+
voice_settings={
|
262 |
+
"stability": stability,
|
263 |
+
"similarity_boost": similarity,
|
264 |
+
"style": style,
|
265 |
+
"use_speaker_boost": speaker_boost
|
266 |
+
}
|
267 |
+
)
|
268 |
+
with open(out_path, "wb") as f:
|
269 |
+
f.write(audio)
|
270 |
+
return True
|
271 |
+
except APIError as e:
|
272 |
+
log.error(f"ElevenLabs API error: {e}")
|
273 |
+
except Exception as e:
|
274 |
+
log.error(f"ElevenLabs synthesis failed: {e}")
|
275 |
+
return False
|
276 |
+
|
277 |
+
def generate_mock_voiceover(narration: str, out_path: str) -> float:
|
278 |
+
"""Silent track matching approximate narration length (fallback)."""
|
279 |
+
duration = max(2.0, min(300.0, len(narration.split()) / WORDS_PER_SEC))
|
280 |
+
subprocess.run([
|
281 |
+
"ffmpeg", "-f", "lavfi", "-i", "anullsrc=r=44100:cl=mono",
|
282 |
+
"-t", f"{duration:.2f}", "-q:a", "9", "-acodec", "libmp3lame",
|
283 |
+
out_path, "-y"
|
284 |
+
], check=True)
|
285 |
+
return duration
|
286 |
|
287 |
+
# ---------------- Runway Integration ----------------
|
288 |
def runway_generate_clip(prompt_image: str, text_prompt: str, duration: int, ratio: str) -> str:
|
289 |
+
"""Create image_to_video task and download resulting MP4."""
|
290 |
try:
|
291 |
task = runway_client.image_to_video.create(
|
292 |
model="gen4_turbo",
|
|
|
318 |
raise gr.Error("Runway returned no outputs.")
|
319 |
video_url = outputs[0]
|
320 |
|
|
|
321 |
clip_path = f"runway_clip_{uid()}.mp4"
|
322 |
+
with httpx.stream("GET", video_url, timeout=180) as resp:
|
323 |
resp.raise_for_status()
|
324 |
with open(clip_path, "wb") as f:
|
325 |
for chunk in resp.iter_bytes():
|
|
|
330 |
list_file = f"concat_{uid()}.txt"
|
331 |
with open(list_file, "w") as lf:
|
332 |
for p in video_paths:
|
333 |
+
lf.write(f"file '{p}'\n")
|
|
|
334 |
temp_concat = f"combined_{uid()}.mp4"
|
335 |
subprocess.run([
|
336 |
+
"ffmpeg", "-f", "concat", "-safe", "0", "-i", list_file,
|
337 |
+
"-c", "copy", temp_concat, "-y"
|
338 |
], check=True)
|
339 |
subprocess.run([
|
340 |
+
"ffmpeg", "-i", temp_concat, "-i", audio_path,
|
341 |
+
"-c:v", "copy", "-c:a", "aac", "-shortest", out_path, "-y"
|
342 |
], check=True)
|
343 |
for p in (list_file, temp_concat):
|
344 |
+
try: os.remove(p)
|
345 |
+
except OSError: pass
|
|
|
|
|
346 |
|
347 |
+
def enhance_scene_prompt(base: str, global_style: str) -> str:
|
348 |
+
return f"{base}. {global_style}"
|
349 |
|
350 |
+
# ---------------- Core Generation ----------------
|
351 |
def generate_video_from_topic(
|
352 |
topic: str,
|
353 |
+
uploaded_keyframe: Optional[str],
|
354 |
scene_count: int,
|
355 |
clip_duration: int,
|
356 |
ratio: str,
|
357 |
+
voice_id: str,
|
358 |
+
model_id: str,
|
359 |
+
stability: float,
|
360 |
+
similarity: float,
|
361 |
+
style: float,
|
362 |
+
speaker_boost: bool,
|
363 |
+
use_streaming_tts: bool,
|
364 |
progress=gr.Progress(track_tqdm=True)
|
365 |
) -> str:
|
366 |
job = uid()
|
367 |
+
log.info(f"[AI-STUDIO] Start job {job} topic='{topic}'")
|
368 |
temp_files: List[str] = []
|
369 |
try:
|
370 |
if not topic or not topic.strip():
|
|
|
381 |
narration = script["narration"]
|
382 |
scenes = script["scenes"]
|
383 |
|
384 |
+
progress(0.30, desc="ποΈ Generating narration...")
|
385 |
+
audio_path = f"narration_{job}.mp3"
|
386 |
temp_files.append(audio_path)
|
387 |
+
|
388 |
+
tts_success = False
|
389 |
+
if ELEVEN_KEY and voice_id and model_id:
|
390 |
+
tts_success = synthesize_narration_elevenlabs(
|
391 |
+
text=narration,
|
392 |
+
voice_id=voice_id,
|
393 |
+
model_id=model_id,
|
394 |
+
stability=stability,
|
395 |
+
similarity=similarity,
|
396 |
+
style=style,
|
397 |
+
speaker_boost=speaker_boost,
|
398 |
+
streaming=use_streaming_tts,
|
399 |
+
out_path=audio_path
|
400 |
)
|
|
|
|
|
401 |
|
402 |
+
if not tts_success:
|
403 |
+
log.warning("Using mock silent track (ElevenLabs unavailable or failed).")
|
404 |
+
generate_mock_voiceover(narration, audio_path)
|
405 |
+
|
406 |
+
progress(0.40, desc="πΌοΈ Preparing keyframe...")
|
407 |
+
if uploaded_keyframe:
|
408 |
+
prompt_image_path = uploaded_keyframe
|
409 |
else:
|
410 |
prompt_image_path = generate_placeholder_image(topic)
|
411 |
temp_files.append(prompt_image_path)
|
412 |
+
with open(prompt_image_path, "rb") as f:
|
413 |
+
b64 = base64.b64encode(f.read()).decode("utf-8")
|
414 |
+
prompt_image = f"data:image/png;base64,{b64}"
|
415 |
|
416 |
+
global_style = "Cinematic, natural volumetric light, subtle camera motion, cohesive style, high detail"
|
417 |
video_clips: List[str] = []
|
418 |
+
|
419 |
for idx, base_prompt in enumerate(scenes, start=1):
|
420 |
+
progress(0.40 + 0.45 * idx / scene_count,
|
421 |
+
desc=f"π¬ Generating scene {idx}/{scene_count}...")
|
422 |
+
full_prompt = enhance_scene_prompt(base_prompt, global_style)
|
423 |
try:
|
424 |
clip_path = runway_generate_clip(
|
425 |
+
prompt_image=prompt_image,
|
426 |
text_prompt=full_prompt,
|
427 |
duration=clip_duration,
|
428 |
ratio=ratio
|
429 |
)
|
430 |
+
video_clips.append(clip_path)
|
431 |
+
temp_files.append(clip_path)
|
432 |
except Exception as e:
|
433 |
+
log.error(f"Scene {idx} failed: {e}")
|
434 |
+
retry_prompt = full_prompt + " -- consistent subject, refined detail"
|
435 |
clip_path = runway_generate_clip(
|
436 |
+
prompt_image=prompt_image,
|
437 |
text_prompt=retry_prompt,
|
438 |
duration=clip_duration,
|
439 |
ratio=ratio
|
440 |
)
|
441 |
+
video_clips.append(clip_path)
|
442 |
+
temp_files.append(clip_path)
|
443 |
|
444 |
progress(0.92, desc="π§΅ Stitching scenes...")
|
445 |
final_out = f"{sanitize_filename(topic)}_{job}.mp4"
|
446 |
concat_and_mux(video_clips, audio_path, final_out)
|
447 |
|
448 |
progress(1.0, desc="β
Done!")
|
449 |
+
log.info(f"[AI-STUDIO] Job {job} complete -> {final_out}")
|
450 |
return final_out
|
451 |
|
452 |
except Exception as e:
|
453 |
+
log.error(f"[AI-STUDIO] Job {job} FAILED: {e}", exc_info=True)
|
454 |
raise gr.Error(f"An error occurred: {e}")
|
455 |
finally:
|
456 |
+
# Clean temp artifacts (not final video)
|
457 |
for p in temp_files:
|
458 |
try:
|
459 |
if os.path.exists(p):
|
|
|
461 |
except OSError:
|
462 |
pass
|
463 |
|
464 |
+
# ---------------- Helper for Voice Dropdown ----------------
|
465 |
+
def refresh_voices() -> List[str]:
|
466 |
voices = list_elevenlabs_voices()
|
467 |
+
return [f"{v['name']}|{v['id']}" for v in voices] if voices else []
|
|
|
|
|
|
|
|
|
|
|
468 |
|
469 |
# ---------------- Gradio UI ----------------
|
470 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
471 |
gr.Markdown("# π¬ AI Video Studio (Runway Gen-4 Turbo + Gemini + ElevenLabs)")
|
472 |
gr.Markdown(
|
473 |
+
"Provide a topic (and optional keyframe). Weβll research, script, generate multi-scene video, "
|
474 |
+
"synthesize narration, and assemble the final clip."
|
475 |
)
|
476 |
|
477 |
with gr.Row():
|
478 |
topic = gr.Textbox(label="Video Topic", placeholder="e.g., The history of coffee", scale=3)
|
479 |
keyframe = gr.Image(type="filepath", label="Optional Keyframe (Image)", scale=2)
|
480 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
481 |
with gr.Row():
|
482 |
scene_count = gr.Slider(1, MAX_SCENES, value=DEFAULT_SCENES, step=1, label="Number of Scenes")
|
483 |
duration = gr.Radio(choices=sorted(list(ALLOWED_DURATIONS)), value=5, label="Seconds per Scene")
|
484 |
+
ratio = gr.Dropdown(choices=["1280:720", "1920:1080", "1080:1920", "1024:1024"],
|
485 |
+
value="1280:720", label="Aspect Ratio")
|
486 |
+
|
487 |
+
gr.Markdown("### Narration (ElevenLabs)")
|
488 |
+
with gr.Row():
|
489 |
+
refresh_btn = gr.Button("π Refresh Voices", variant="secondary")
|
490 |
+
voices_dd = gr.Dropdown(choices=[], label="Voice (Name|ID)", value=None)
|
491 |
+
model_dd = gr.Dropdown(
|
492 |
+
choices=[
|
493 |
+
"eleven_multilingual_v2", "eleven_turbo_v2_5",
|
494 |
+
"eleven_flash_v2_5", "eleven_monolingual_v1"
|
495 |
+
],
|
496 |
+
value="eleven_turbo_v2_5",
|
497 |
+
label="ElevenLabs Model"
|
498 |
+
)
|
499 |
+
streaming_chk = gr.Checkbox(label="Streaming TTS", value=False)
|
500 |
+
|
501 |
+
with gr.Row():
|
502 |
+
stability = gr.Slider(0, 1, value=0.55, step=0.01, label="Stability")
|
503 |
+
similarity = gr.Slider(0, 1, value=0.80, step=0.01, label="Similarity Boost")
|
504 |
+
style = gr.Slider(0, 1, value=0.20, step=0.01, label="Style")
|
505 |
+
speaker_boost = gr.Checkbox(label="Speaker Boost", value=True)
|
506 |
|
507 |
generate_btn = gr.Button("π Generate Video", variant="primary")
|
508 |
output_video = gr.Video(label="Final Video")
|
509 |
|
510 |
+
def _do_refresh():
|
511 |
+
return gr.update(choices=refresh_voices())
|
512 |
+
|
513 |
+
refresh_btn.click(fn=_do_refresh, outputs=voices_dd)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
514 |
|
515 |
generate_btn.click(
|
516 |
+
fn=generate_video_from_topic,
|
517 |
+
inputs=[
|
518 |
+
topic, keyframe, scene_count, duration, ratio,
|
519 |
+
voices_dd, model_dd, stability, similarity, style,
|
520 |
+
speaker_boost, streaming_chk
|
521 |
+
],
|
522 |
outputs=output_video
|
523 |
)
|
524 |
|
525 |
+
gr.Markdown("### Tips\n"
|
526 |
+
"- Provide a strong keyframe for better temporal coherence.\n"
|
527 |
+
"- Refine scene prompts by adjusting topic wording if motion feels generic.\n"
|
528 |
+
"- Tweak Stability and Similarity to balance expressiveness vs consistency.")
|
|
|
|
|
|
|
529 |
|
530 |
if __name__ == "__main__":
|
531 |
demo.launch()
|