Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import google.generativeai as genai
|
4 |
+
# Import other SDKs for Runway, ElevenLabs, Tavily
|
5 |
+
# For example: from elevenlabs import generate, play, set_api_key
|
6 |
+
import subprocess
|
7 |
+
import json
|
8 |
+
import time
|
9 |
+
|
10 |
+
# --- 1. LOAD API KEYS FROM SECRETS ---
|
11 |
+
# This is the secure way to do it in Hugging Face Spaces
|
12 |
+
genai.configure(api_key=os.environ.get('GEMINI_API_KEY'))
|
13 |
+
# set_api_key(os.environ.get('ELEVENLABS_API_KEY'))
|
14 |
+
# ... and so on for other APIs
|
15 |
+
|
16 |
+
# --- 2. DEFINE THE CORE VIDEO GENERATION FUNCTION ---
|
17 |
+
# This function will take the client's prompt and do all the work.
|
18 |
+
def generate_video_from_topic(topic_prompt):
|
19 |
+
print(f"Starting video generation for topic: {topic_prompt}")
|
20 |
+
|
21 |
+
# Placeholder for the final video path
|
22 |
+
final_video_path = None
|
23 |
+
|
24 |
+
try:
|
25 |
+
# STEP A: RESEARCH (Tavily) - Optional but recommended
|
26 |
+
# research_results = tavily_client.search(query=f"Key points about {topic_prompt}")
|
27 |
+
# facts = research_results['results']
|
28 |
+
|
29 |
+
# STEP B: SCRIPT & SCENE PROMPTS (Gemini)
|
30 |
+
# We ask Gemini for a structured JSON output
|
31 |
+
gemini_model = genai.GenerativeModel('gemini-pro')
|
32 |
+
prompt = f"""
|
33 |
+
Create a short video script about '{topic_prompt}'.
|
34 |
+
The video should be about 30 seconds long.
|
35 |
+
Return a JSON object with two keys: 'narration_script' (a string) and 'scene_prompts' (a list of 4 detailed, cinematic visual prompts for an AI video generator).
|
36 |
+
|
37 |
+
Example:
|
38 |
+
{{
|
39 |
+
"narration_script": "This is the complete narration for the video.",
|
40 |
+
"scene_prompts": ["prompt 1", "prompt 2", "prompt 3", "prompt 4"]
|
41 |
+
}}
|
42 |
+
"""
|
43 |
+
response = gemini_model.generate_content(prompt)
|
44 |
+
script_data = json.loads(response.text)
|
45 |
+
|
46 |
+
narration = script_data['narration_script']
|
47 |
+
scene_prompts = script_data['scene_prompts']
|
48 |
+
print(f"Generated Narration: {narration}")
|
49 |
+
print(f"Generated Scene Prompts: {scene_prompts}")
|
50 |
+
|
51 |
+
# STEP C: VOICE OVER (ElevenLabs)
|
52 |
+
# audio_bytes = generate(text=narration, voice="Adam", model="eleven_multilingual_v2")
|
53 |
+
# with open("audio.mp3", "wb") as f:
|
54 |
+
# f.write(audio_bytes)
|
55 |
+
# print("Audio file generated.")
|
56 |
+
|
57 |
+
# --- MOCKUP for now ---
|
58 |
+
# Since API calls cost money, let's use a placeholder for testing
|
59 |
+
print("MOCK: Skipping real API calls for audio. Using a placeholder.")
|
60 |
+
# Create a silent audio file of the right length for testing
|
61 |
+
narration_duration = len(narration.split()) / 2.5 # Estimate duration
|
62 |
+
subprocess.run(['ffmpeg', '-f', 'lavfi', '-i', 'anullsrc=r=44100:cl=mono', '-t', str(narration_duration), '-q:a', '9', '-acodec', 'libmp3lame', 'audio.mp3', '-y'])
|
63 |
+
|
64 |
+
|
65 |
+
# STEP D: VISUALS (Runway/Hailuo)
|
66 |
+
video_clips = []
|
67 |
+
for i, scene_prompt in enumerate(scene_prompts):
|
68 |
+
print(f"Generating video for scene {i+1}: {scene_prompt}")
|
69 |
+
# MOCKUP: Create a simple placeholder video clip
|
70 |
+
clip_path = f"scene_{i+1}.mp4"
|
71 |
+
subprocess.run([
|
72 |
+
'ffmpeg', '-f', 'lavfi', '-i', f'smptebars=size=1920x1080:rate=30',
|
73 |
+
'-t', '4', '-pix_fmt', 'yuv420p', clip_path, '-y'
|
74 |
+
])
|
75 |
+
video_clips.append(clip_path)
|
76 |
+
|
77 |
+
# STEP E: STITCHING (FFmpeg)
|
78 |
+
# Create a file list for ffmpeg
|
79 |
+
with open("file_list.txt", "w") as f:
|
80 |
+
for clip in video_clips:
|
81 |
+
f.write(f"file '{clip}'\n")
|
82 |
+
|
83 |
+
# Concatenate video clips
|
84 |
+
subprocess.run(['ffmpeg', '-f', 'concat', '-safe', '0', '-i', 'file_list.txt', '-c', 'copy', 'combined_video.mp4', '-y'])
|
85 |
+
|
86 |
+
# Add audio to the combined video
|
87 |
+
final_video_path = f"final_video_{int(time.time())}.mp4"
|
88 |
+
subprocess.run([
|
89 |
+
'ffmpeg', '-i', 'combined_video.mp4', '-i', 'audio.mp3', '-c:v', 'copy',
|
90 |
+
'-c:a', 'aac', '-shortest', final_video_path, '-y'
|
91 |
+
])
|
92 |
+
print(f"Final video created at: {final_video_path}")
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
print(f"An error occurred: {e}")
|
96 |
+
# You can return an error message to the Gradio interface
|
97 |
+
raise gr.Error(f"Failed to generate video. Error: {e}")
|
98 |
+
|
99 |
+
# Return the path to the final video so Gradio can display it
|
100 |
+
return final_video_path
|
101 |
+
|
102 |
+
|
103 |
+
# --- 3. CREATE THE GRADIO INTERFACE ---
|
104 |
+
with gr.Blocks() as demo:
|
105 |
+
gr.Markdown("# 🤖 My Personal AI Video Studio")
|
106 |
+
gr.Markdown("Enter a topic to generate a short-form video for social media. Used for fulfilling Fiverr orders.")
|
107 |
+
|
108 |
+
with gr.Row():
|
109 |
+
topic_input = gr.Textbox(label="Video Topic", placeholder="e.g., 'The benefits of a standing desk'")
|
110 |
+
generate_button = gr.Button("Generate Video", variant="primary")
|
111 |
+
|
112 |
+
with gr.Row():
|
113 |
+
video_output = gr.Video(label="Generated Video")
|
114 |
+
|
115 |
+
generate_button.click(
|
116 |
+
fn=generate_video_from_topic,
|
117 |
+
inputs=topic_input,
|
118 |
+
outputs=video_output
|
119 |
+
)
|
120 |
+
|
121 |
+
# --- 4. LAUNCH THE APP ---
|
122 |
+
demo.launch()
|