File size: 25,477 Bytes
af64a0f 96005ed a90e972 96005ed 3ee401e 96005ed 3ee401e d07300c a90e972 3ee401e a90e972 f0d7cfb 3ee401e f0d7cfb 3ee401e f0d7cfb a90e972 3ee401e f0d7cfb 3ee401e a90e972 f0d7cfb a90e972 f0d7cfb a90e972 f0d7cfb a90e972 f0d7cfb 3ee401e f0d7cfb 3ee401e f0d7cfb a90e972 3ee401e f0d7cfb 3ee401e a90e972 f0d7cfb a90e972 f0d7cfb a90e972 f0d7cfb a90e972 f0d7cfb 3ee401e a90e972 3ee401e a90e972 3ee401e a90e972 f0d7cfb 3ee401e a90e972 3ee401e a90e972 3ee401e a90e972 3ee401e a90e972 3ee401e a90e972 3ee401e a90e972 3ee401e a90e972 3ee401e a90e972 af64a0f d07300c 3ee401e d07300c af64a0f f0d7cfb af64a0f a90e972 d07300c a90e972 af64a0f 3ee401e a90e972 3ee401e a90e972 d07300c a90e972 d07300c af64a0f a90e972 d07300c a90e972 af64a0f a90e972 d07300c 3ee401e af64a0f a90e972 d07300c a90e972 d07300c a90e972 d07300c a90e972 d07300c 3ee401e d07300c a90e972 d07300c a90e972 d07300c a90e972 af64a0f d07300c af64a0f d07300c a90e972 af64a0f a90e972 af64a0f a90e972 af64a0f a90e972 af64a0f a90e972 af64a0f a90e972 d07300c 3ee401e af64a0f a90e972 af64a0f a90e972 d07300c a90e972 d07300c a90e972 3ee401e a90e972 d07300c 3ee401e d07300c a90e972 d07300c a90e972 d07300c a90e972 d07300c a90e972 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
import streamlit as st
import json
import zipfile
import io
import time
import os
import requests
from PIL import Image
import base64
import textwrap
from dotenv import load_dotenv
from openai import OpenAI # Updated OpenAI client
# Load environment variables
load_dotenv()
# Initialize API clients
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) if os.getenv("OPENAI_API_KEY") else None
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
# =============================
# UPDATED AGENT IMPLEMENTATION (OpenAI v1.x compatible)
# =============================
class TopicAgent:
def generate_outline(self, topic, duration, difficulty):
if not openai_client:
return self._mock_outline(topic, duration, difficulty)
try:
response = openai_client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{
"role": "system",
"content": "You're an expert corporate trainer creating comprehensive AI workshop outlines."
},
{
"role": "user",
"content": (
f"Create a detailed {duration}-hour {difficulty} workshop outline on {topic}. "
"Include: 4-6 modules with specific learning objectives, hands-on exercises, "
"and real-world case studies. Format as JSON with keys: "
"{'topic', 'duration', 'difficulty', 'goals', 'modules': ["
"{'title', 'duration', 'learning_objectives', 'case_study', 'exercises'}]}"
)
}
],
temperature=0.3,
max_tokens=1500,
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
except Exception as e:
st.error(f"Outline generation error: {str(e)}")
return self._mock_outline(topic, duration, difficulty)
def _mock_outline(self, topic, duration, difficulty):
return {
"topic": topic,
"duration": f"{duration} hours",
"difficulty": difficulty,
"goals": [
"Master core concepts and advanced techniques",
"Develop practical implementation skills",
"Learn industry best practices and case studies",
"Build confidence in real-world applications"
],
"modules": [
{
"title": "Foundations of Prompt Engineering",
"duration": "90 min",
"learning_objectives": [
"Understand prompt components and structure",
"Learn prompt patterns and anti-patterns",
"Master zero-shot and few-shot prompting"
],
"case_study": "How Anthropic improved customer support with prompt engineering",
"exercises": [
"Craft effective prompts for different scenarios",
"Optimize prompts for specific AI models"
]
},
{
"title": "Advanced Techniques & Strategies",
"duration": "120 min",
"learning_objectives": [
"Implement chain-of-thought prompting",
"Use meta-prompts for complex tasks",
"Apply self-consistency methods"
],
"case_study": "OpenAI's approach to prompt engineering in GPT-4",
"exercises": [
"Design prompts for multi-step reasoning",
"Create self-correcting prompt systems"
]
}
]
}
class ContentAgent:
def generate_content(self, outline):
if not openai_client:
return self._mock_content(outline)
try:
response = openai_client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{
"role": "system",
"content": "You're a corporate training content developer creating detailed workshop materials."
},
{
"role": "user",
"content": (
f"Expand this workshop outline into comprehensive content: {json.dumps(outline)}. "
"For each module, include: detailed script (3-5 paragraphs), speaker notes (bullet points), "
"3 quiz questions with explanations, and exercise instructions. Format as JSON with keys: "
"{'workshop_title', 'modules': [{'title', 'script', 'speaker_notes', 'quiz': ["
"{'question', 'options', 'answer', 'explanation'}], 'exercise_instructions'}]}"
)
}
],
temperature=0.4,
max_tokens=2000,
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
except Exception as e:
st.error(f"Content generation error: {str(e)}")
return self._mock_content(outline)
def _mock_content(self, outline):
return {
"workshop_title": f"Mastering {outline['topic']}",
"modules": [
{
"title": "Foundations of Prompt Engineering",
"script": "This module introduces the core concepts of effective prompt engineering...",
"speaker_notes": [
"Emphasize the importance of clear instructions",
"Show examples of good vs bad prompts",
"Discuss token limitations and their impact"
],
"quiz": [
{
"question": "What's the most important element of a good prompt?",
"options": ["Length", "Specificity", "Complexity", "Creativity"],
"answer": "Specificity",
"explanation": "Specific prompts yield more accurate and relevant responses"
}
],
"exercise_instructions": "Create a prompt that extracts key insights from a financial report..."
}
]
}
class SlideAgent:
def generate_slides(self, content):
if not openai_client:
return self._mock_slides(content)
try:
response = openai_client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{
"role": "system",
"content": "You create professional slide decks in Markdown format using Marp syntax."
},
{
"role": "user",
"content": (
f"Create a slide deck for this workshop content: {json.dumps(content)}. "
"Use Marp Markdown format with themes and visual elements. "
"Include: title slide, module slides with key points, case studies, "
"exercise instructions, and summary slides. Make it visually appealing."
)
}
],
temperature=0.2,
max_tokens=2500
)
return response.choices[0].message.content
except Exception as e:
st.error(f"Slide generation error: {str(e)}")
return self._mock_slides(content)
def _mock_slides(self, content):
return f"""---
marp: true
theme: gaia
backgroundColor: #fff
backgroundImage: url('https://marp.app/assets/hero-background.svg')
---
# {content['workshop_title']}
## Comprehensive Corporate Training Program
---
## Module 1: Foundations of Prompt Engineering

- Core concepts and principles
- Patterns and anti-patterns
- Practical implementation techniques
---
## Case Study
### Anthropic's Customer Support Implementation
- 40% faster resolution times
- 25% reduction in training costs
- 92% customer satisfaction
---
## Exercises
1. Craft effective prompts for different scenarios
2. Optimize prompts for specific AI models
3. Analyze and refine prompt performance
"""
class CodeAgent:
def generate_code(self, content):
if not openai_client:
return self._mock_code(content)
try:
response = openai_client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{
"role": "system",
"content": "You create practical code labs for technical workshops."
},
{
"role": "user",
"content": (
f"Create a Jupyter notebook with code exercises for this workshop: {json.dumps(content)}. "
"Include: setup instructions, practical exercises with solutions, "
"and real-world implementation examples. Use Python with popular AI libraries."
)
}
],
temperature=0.3,
max_tokens=2000
)
return response.choices[0].message.content
except Exception as e:
st.error(f"Code generation error: {str(e)}")
return self._mock_code(content)
def _mock_code(self, content):
return f"""# {content['workshop_title']} - Code Labs
import openai
import pandas as pd
## Exercise 1: Basic Prompt Engineering
def generate_response(prompt):
response = openai.chat.completions.create(
model="gpt-4",
messages=[{{"role": "user", "content": prompt}}]
)
return response.choices[0].message.content
# Test your function
print(generate_response("Explain quantum computing in simple terms"))
## Exercise 2: Advanced Prompt Patterns
# TODO: Implement chain-of-thought prompting
# TODO: Create meta-prompts for complex tasks
## Real-World Implementation
# TODO: Build a customer support question classifier
"""
class DesignAgent:
def generate_design(self, slide_content):
if not openai_client:
return None
try:
response = openai_client.images.generate(
prompt=f"Create a professional slide background for a corporate AI workshop about: {slide_content[:500]}",
n=1,
size="1024x1024"
)
return response.data[0].url
except Exception as e:
st.error(f"Design generation error: {str(e)}")
return None
class VoiceoverAgent:
def __init__(self):
self.api_key = ELEVENLABS_API_KEY
self.voice_id = "21m00Tcm4TlvDq8ikWAM" # Default voice ID (Bella)
self.model = "eleven_monolingual_v1"
def generate_voiceover(self, text, voice_id=None):
if not self.api_key:
return None
try:
# Use custom voice if provided, otherwise use default
voice = voice_id if voice_id else self.voice_id
url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice}"
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": self.api_key
}
data = {
"text": text,
"model_id": self.model,
"voice_settings": {
"stability": 0.7,
"similarity_boost": 0.8,
"style": 0.5,
"use_speaker_boost": True
}
}
response = requests.post(url, json=data, headers=headers)
if response.status_code == 200:
return response.content
else:
st.error(f"Voiceover API error: {response.status_code} - {response.text}")
return None
except Exception as e:
st.error(f"Voiceover generation error: {str(e)}")
return None
def get_voices(self):
if not self.api_key:
return []
try:
url = "https://api.elevenlabs.io/v1/voices"
headers = {"xi-api-key": self.api_key}
response = requests.get(url, headers=headers)
if response.status_code == 200:
return response.json().get("voices", [])
return []
except Exception as e:
st.error(f"Voice loading error: {str(e)}")
return []
# Initialize agents
topic_agent = TopicAgent()
content_agent = ContentAgent()
slide_agent = SlideAgent()
code_agent = CodeAgent()
design_agent = DesignAgent()
voiceover_agent = VoiceoverAgent()
# =====================
# STREAMLIT APPLICATION
# =====================
st.set_page_config(
page_title="Workshop in a Box Pro",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS with fixed input styling
st.markdown("""
<style>
.stApp {
background: linear-gradient(135deg, #6a11cb 0%, #2575fc 100%);
color: #fff;
}
/* Fix for input text color */
.stTextInput>div>div>input {
color: #333 !important;
background-color: #fff !important;
}
.stSlider>div>div>div>div {
background-color: rgba(255,255,255,0.1) !important;
color: white !important;
}
.stButton>button {
background: linear-gradient(to right, #00b09b, #96c93d) !important;
color: white !important;
border: none;
border-radius: 30px;
padding: 10px 25px;
font-size: 16px;
font-weight: bold;
}
.stDownloadButton>button {
background: linear-gradient(to right, #ff5e62, #ff9966) !important;
}
.stExpander {
background-color: rgba(0,0,0,0.2) !important;
border-radius: 10px;
padding: 15px;
}
.audio-player {
margin: 15px 0;
border-radius: 10px;
background: rgba(255,255,255,0.1);
padding: 15px;
}
.voice-option {
display: flex;
align-items: center;
margin: 5px 0;
padding: 8px;
border-radius: 8px;
cursor: pointer;
transition: background 0.3s;
}
.voice-option:hover {
background: rgba(255,255,255,0.2);
}
.voice-option.selected {
background: rgba(0,180,155,0.3);
border: 2px solid #00b09b;
}
.voice-thumb {
width: 40px;
height: 40px;
border-radius: 50%;
margin-right: 10px;
object-fit: cover;
}
</style>
""", unsafe_allow_html=True)
# Header
col1, col2 = st.columns([1, 3])
with col1:
st.image("https://cdn-icons-png.flaticon.com/512/1995/1995485.png", width=100)
with col2:
st.title("π€ Workshop in a Box Pro")
st.caption("Generate Premium Corporate AI Training Workshops with Voiceovers")
# Initialize session state
if 'workshop_topic' not in st.session_state:
st.session_state.workshop_topic = "Advanced Prompt Engineering"
if 'generated' not in st.session_state:
st.session_state.generated = False
if 'generating' not in st.session_state:
st.session_state.generating = False
if 'voiceovers' not in st.session_state:
st.session_state.voiceovers = {}
if 'selected_voice' not in st.session_state:
st.session_state.selected_voice = "21m00Tcm4TlvDq8ikWAM" # Default voice ID
# Sidebar configuration
with st.sidebar:
st.header("βοΈ Workshop Configuration")
# Workshop topic input with session state
st.session_state.workshop_topic = st.text_input(
"Workshop Topic",
st.session_state.workshop_topic,
key="topic_input",
help="Enter the main topic for your workshop"
)
# Validate topic input
if st.session_state.workshop_topic.strip() == "":
st.warning("Please enter a workshop topic")
st.stop()
duration = st.slider("Duration (hours)", 1.0, 8.0, 3.0, 0.5)
difficulty = st.selectbox("Difficulty Level",
["Beginner", "Intermediate", "Advanced", "Expert"])
include_code = st.checkbox("Include Code Labs", True)
include_design = st.checkbox("Generate Visual Designs", True)
include_voiceover = st.checkbox("Generate Voiceovers", True)
# Voice selection
if include_voiceover:
st.subheader("ποΈ Voice Selection")
# Get available voices
voices = voiceover_agent.get_voices()
# If we have voices, let the user select one
if voices:
# Create 2 columns for voice selection
cols = st.columns(2)
for i, voice in enumerate(voices[:4]): # Show first 4 voices
with cols[i % 2]:
# Create a unique key for each voice button
voice_key = f"voice_{voice['voice_id']}"
# Display voice option
if st.button(
f"π£οΈ {voice['name']}",
key=voice_key,
use_container_width=True,
help=f"Select {voice['name']} voice"
):
st.session_state.selected_voice = voice['voice_id']
# Show which voice is currently selected
selected_voice_name = next((v['name'] for v in voices if v['voice_id'] == st.session_state.selected_voice), "Default")
st.info(f"Selected Voice: **{selected_voice_name}**")
else:
if ELEVENLABS_API_KEY:
st.warning("Couldn't load voices. Using default voice.")
else:
st.warning("ElevenLabs API key not set. Voiceovers disabled.")
if st.button("β¨ Generate Workshop", type="primary", use_container_width=True):
st.session_state.generating = True
st.session_state.voiceovers = {} # Reset previous voiceovers
# Generation pipeline
if st.session_state.generating:
with st.spinner(f"π Creating your {st.session_state.workshop_topic} workshop..."):
start_time = time.time()
# Agent pipeline
outline = topic_agent.generate_outline(st.session_state.workshop_topic, duration, difficulty)
content = content_agent.generate_content(outline)
slides = slide_agent.generate_slides(content)
code_labs = code_agent.generate_code(content) if include_code else None
design_url = design_agent.generate_design(slides) if include_design else None
# Generate voiceovers if enabled
voiceovers = {}
if include_voiceover and ELEVENLABS_API_KEY:
for i, module in enumerate(content.get("modules", [])):
# Create a short intro for each module
intro_text = f"Welcome to Module {i+1}: {module['title']}. " + \
f"In this module, we'll cover: {', '.join(module.get('speaker_notes', []))[:300]}"
# Generate voiceover
audio_data = voiceover_agent.generate_voiceover(
intro_text,
st.session_state.selected_voice
)
if audio_data:
voiceovers[f"module_{i+1}_intro.mp3"] = audio_data
# Prepare download package
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, "a") as zip_file:
zip_file.writestr("outline.json", json.dumps(outline, indent=2))
zip_file.writestr("content.json", json.dumps(content, indent=2))
zip_file.writestr("slides.md", slides)
if code_labs:
zip_file.writestr("code_labs.ipynb", code_labs)
if design_url:
try:
img_data = requests.get(design_url).content
zip_file.writestr("slide_design.png", img_data)
except:
pass
# Add voiceovers to ZIP
for filename, audio_data in voiceovers.items():
zip_file.writestr(f"voiceovers/{filename}", audio_data)
# Store results
st.session_state.outline = outline
st.session_state.content = content
st.session_state.slides = slides
st.session_state.code_labs = code_labs
st.session_state.design_url = design_url
st.session_state.voiceovers = voiceovers
st.session_state.zip_buffer = zip_buffer
st.session_state.gen_time = round(time.time() - start_time, 2)
st.session_state.generated = True
st.session_state.generating = False
# Results display
if st.session_state.generated:
st.success(f"β
{st.session_state.workshop_topic} workshop generated in {st.session_state.gen_time} seconds!")
# Download button
st.download_button(
label="π₯ Download Workshop Package",
data=st.session_state.zip_buffer.getvalue(),
file_name=f"{st.session_state.workshop_topic.replace(' ', '_')}_workshop.zip",
mime="application/zip",
use_container_width=True
)
# Preview sections
with st.expander("π Workshop Outline", expanded=True):
st.json(st.session_state.outline)
with st.expander("π Content Script"):
st.write(st.session_state.content)
with st.expander("π₯οΈ Slide Deck Preview"):
st.markdown("```markdown\n" + textwrap.dedent(st.session_state.slides[:2000]) + "\n```")
if st.session_state.code_labs:
with st.expander("π» Code Labs"):
st.code(st.session_state.code_labs)
if st.session_state.design_url:
with st.expander("π¨ Generated Design"):
st.image(st.session_state.design_url, caption="Custom Slide Design")
# Voiceover player
if st.session_state.voiceovers:
with st.expander("π Voiceover Previews"):
for i, (filename, audio_bytes) in enumerate(st.session_state.voiceovers.items()):
module_num = filename.split("_")[1]
st.subheader(f"Module {module_num} Introduction")
# Create an audio player for each voiceover
st.audio(audio_bytes, format="audio/mp3")
# Add download button for individual voiceover
st.download_button(
label=f"Download Module {module_num} Voiceover",
data=audio_bytes,
file_name=filename,
mime="audio/mpeg",
key=f"voiceover_dl_{i}"
)
elif include_voiceover and ELEVENLABS_API_KEY:
st.warning("Voiceovers not generated. Check your ElevenLabs API key.")
# Sales and booking section
st.divider()
st.subheader("π Ready to Deliver This Workshop?")
st.markdown(f"""
### Premium {st.session_state.workshop_topic} Training Package
- **Live Workshop Delivery**: $10,000 per session
- **On-Demand Course**: $5,000 (unlimited access)
- **Pilot Program**: $1,000 refundable deposit
- **Voiceover Add-on**: $500 per module
β¨ **All inclusive**: Customization, materials, and follow-up support
""")
col1, col2 = st.columns(2)
with col1:
st.link_button("π
Book a Live Workshop", "https://calendly.com/your-link",
use_container_width=True)
with col2:
st.link_button("π³ Purchase On-Demand Course", "https://your-store.com",
use_container_width=True)
# Debug info
with st.sidebar:
st.divider()
if openai_client:
st.success("OpenAI API Connected")
else:
st.warning("OpenAI API not set - using enhanced mock data")
if ELEVENLABS_API_KEY:
st.success("ElevenLabs API Key Found")
elif include_voiceover:
st.warning("ElevenLabs API key not set")
st.info(f"""
**Current Workshop:**
{st.session_state.workshop_topic}
**Premium Features:**
- AI-generated voiceovers
- Professional slide designs
- Real-world case studies
- Practical code labs
""")
# How it works section
st.divider()
st.subheader("π‘ How It Works")
st.markdown("""
1. **Configure** your workshop topic and parameters
2. **Generate** premium training materials with voiceovers
3. **Customize** the content to your specific needs
4. **Deliver** high-value corporate training at $10K/session
5. **Reuse** the materials for unlimited revenue
*"The voiceover feature helped me create on-demand courses that sold for $5K each"* - Michael L., AI Consultant
""") |