File size: 25,477 Bytes
af64a0f
 
 
 
 
96005ed
a90e972
 
 
 
96005ed
3ee401e
96005ed
 
 
 
3ee401e
 
d07300c
a90e972
 
3ee401e
a90e972
f0d7cfb
 
 
3ee401e
f0d7cfb
 
 
3ee401e
 
f0d7cfb
a90e972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee401e
 
f0d7cfb
3ee401e
a90e972
 
f0d7cfb
 
 
 
 
 
 
 
a90e972
 
 
 
f0d7cfb
 
 
a90e972
 
 
 
 
 
 
 
 
 
 
f0d7cfb
 
 
a90e972
 
 
 
 
 
 
 
 
 
 
f0d7cfb
 
 
 
 
 
 
3ee401e
f0d7cfb
 
 
3ee401e
 
f0d7cfb
a90e972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee401e
 
f0d7cfb
3ee401e
a90e972
 
f0d7cfb
 
 
 
 
 
 
a90e972
 
 
 
 
 
 
f0d7cfb
 
a90e972
 
 
 
f0d7cfb
a90e972
 
 
f0d7cfb
 
 
 
 
3ee401e
a90e972
 
 
3ee401e
 
a90e972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee401e
a90e972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0d7cfb
 
 
3ee401e
a90e972
 
 
3ee401e
 
a90e972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee401e
a90e972
 
 
 
 
 
 
 
 
 
 
 
3ee401e
a90e972
 
 
3ee401e
a90e972
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee401e
a90e972
 
 
3ee401e
a90e972
 
 
 
3ee401e
a90e972
 
 
af64a0f
d07300c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee401e
 
d07300c
 
af64a0f
f0d7cfb
 
af64a0f
 
a90e972
d07300c
a90e972
 
 
 
 
 
 
 
 
 
af64a0f
3ee401e
a90e972
 
 
 
 
 
3ee401e
 
 
 
 
 
a90e972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d07300c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a90e972
 
 
 
 
 
 
 
 
d07300c
 
 
 
 
 
 
 
 
 
 
 
 
af64a0f
 
 
a90e972
d07300c
 
 
 
 
 
 
 
 
 
 
 
 
 
a90e972
 
 
af64a0f
a90e972
d07300c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee401e
 
 
 
af64a0f
a90e972
 
d07300c
a90e972
 
d07300c
 
a90e972
 
 
d07300c
a90e972
 
 
 
 
d07300c
 
 
 
3ee401e
d07300c
 
 
 
 
 
 
 
 
 
 
 
a90e972
 
 
 
 
 
 
 
 
 
 
 
 
 
d07300c
 
 
a90e972
 
 
 
 
 
 
d07300c
a90e972
 
 
 
af64a0f
 
d07300c
 
af64a0f
 
 
 
 
d07300c
a90e972
 
af64a0f
 
 
a90e972
af64a0f
 
a90e972
af64a0f
 
a90e972
 
af64a0f
 
a90e972
af64a0f
a90e972
 
 
 
d07300c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee401e
 
af64a0f
a90e972
af64a0f
a90e972
d07300c
 
a90e972
 
 
d07300c
a90e972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee401e
a90e972
 
 
 
d07300c
3ee401e
 
 
d07300c
 
 
 
 
a90e972
d07300c
 
a90e972
 
 
 
 
 
 
 
 
d07300c
a90e972
 
 
 
d07300c
a90e972
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
import streamlit as st
import json
import zipfile
import io
import time
import os
import requests
from PIL import Image
import base64
import textwrap
from dotenv import load_dotenv
from openai import OpenAI  # Updated OpenAI client

# Load environment variables
load_dotenv()

# Initialize API clients
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) if os.getenv("OPENAI_API_KEY") else None
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")

# =============================
# UPDATED AGENT IMPLEMENTATION (OpenAI v1.x compatible)
# =============================

class TopicAgent:
    def generate_outline(self, topic, duration, difficulty):
        if not openai_client:
            return self._mock_outline(topic, duration, difficulty)
            
        try:
            response = openai_client.chat.completions.create(
                model="gpt-4-turbo",
                messages=[
                    {
                        "role": "system",
                        "content": "You're an expert corporate trainer creating comprehensive AI workshop outlines."
                    },
                    {
                        "role": "user",
                        "content": (
                            f"Create a detailed {duration}-hour {difficulty} workshop outline on {topic}. "
                            "Include: 4-6 modules with specific learning objectives, hands-on exercises, "
                            "and real-world case studies. Format as JSON with keys: "
                            "{'topic', 'duration', 'difficulty', 'goals', 'modules': ["
                            "{'title', 'duration', 'learning_objectives', 'case_study', 'exercises'}]}"
                        )
                    }
                ],
                temperature=0.3,
                max_tokens=1500,
                response_format={"type": "json_object"}
            )
            return json.loads(response.choices[0].message.content)
        except Exception as e:
            st.error(f"Outline generation error: {str(e)}")
            return self._mock_outline(topic, duration, difficulty)
    
    def _mock_outline(self, topic, duration, difficulty):
        return {
            "topic": topic,
            "duration": f"{duration} hours",
            "difficulty": difficulty,
            "goals": [
                "Master core concepts and advanced techniques",
                "Develop practical implementation skills",
                "Learn industry best practices and case studies",
                "Build confidence in real-world applications"
            ],
            "modules": [
                {
                    "title": "Foundations of Prompt Engineering",
                    "duration": "90 min",
                    "learning_objectives": [
                        "Understand prompt components and structure",
                        "Learn prompt patterns and anti-patterns",
                        "Master zero-shot and few-shot prompting"
                    ],
                    "case_study": "How Anthropic improved customer support with prompt engineering",
                    "exercises": [
                        "Craft effective prompts for different scenarios",
                        "Optimize prompts for specific AI models"
                    ]
                },
                {
                    "title": "Advanced Techniques & Strategies",
                    "duration": "120 min",
                    "learning_objectives": [
                        "Implement chain-of-thought prompting",
                        "Use meta-prompts for complex tasks",
                        "Apply self-consistency methods"
                    ],
                    "case_study": "OpenAI's approach to prompt engineering in GPT-4",
                    "exercises": [
                        "Design prompts for multi-step reasoning",
                        "Create self-correcting prompt systems"
                    ]
                }
            ]
        }

class ContentAgent:
    def generate_content(self, outline):
        if not openai_client:
            return self._mock_content(outline)
            
        try:
            response = openai_client.chat.completions.create(
                model="gpt-4-turbo",
                messages=[
                    {
                        "role": "system",
                        "content": "You're a corporate training content developer creating detailed workshop materials."
                    },
                    {
                        "role": "user",
                        "content": (
                            f"Expand this workshop outline into comprehensive content: {json.dumps(outline)}. "
                            "For each module, include: detailed script (3-5 paragraphs), speaker notes (bullet points), "
                            "3 quiz questions with explanations, and exercise instructions. Format as JSON with keys: "
                            "{'workshop_title', 'modules': [{'title', 'script', 'speaker_notes', 'quiz': ["
                            "{'question', 'options', 'answer', 'explanation'}], 'exercise_instructions'}]}"
                        )
                    }
                ],
                temperature=0.4,
                max_tokens=2000,
                response_format={"type": "json_object"}
            )
            return json.loads(response.choices[0].message.content)
        except Exception as e:
            st.error(f"Content generation error: {str(e)}")
            return self._mock_content(outline)
    
    def _mock_content(self, outline):
        return {
            "workshop_title": f"Mastering {outline['topic']}",
            "modules": [
                {
                    "title": "Foundations of Prompt Engineering",
                    "script": "This module introduces the core concepts of effective prompt engineering...",
                    "speaker_notes": [
                        "Emphasize the importance of clear instructions",
                        "Show examples of good vs bad prompts",
                        "Discuss token limitations and their impact"
                    ],
                    "quiz": [
                        {
                            "question": "What's the most important element of a good prompt?",
                            "options": ["Length", "Specificity", "Complexity", "Creativity"],
                            "answer": "Specificity",
                            "explanation": "Specific prompts yield more accurate and relevant responses"
                        }
                    ],
                    "exercise_instructions": "Create a prompt that extracts key insights from a financial report..."
                }
            ]
        }

class SlideAgent:
    def generate_slides(self, content):
        if not openai_client:
            return self._mock_slides(content)
            
        try:
            response = openai_client.chat.completions.create(
                model="gpt-4-turbo",
                messages=[
                    {
                        "role": "system",
                        "content": "You create professional slide decks in Markdown format using Marp syntax."
                    },
                    {
                        "role": "user",
                        "content": (
                            f"Create a slide deck for this workshop content: {json.dumps(content)}. "
                            "Use Marp Markdown format with themes and visual elements. "
                            "Include: title slide, module slides with key points, case studies, "
                            "exercise instructions, and summary slides. Make it visually appealing."
                        )
                    }
                ],
                temperature=0.2,
                max_tokens=2500
            )
            return response.choices[0].message.content
        except Exception as e:
            st.error(f"Slide generation error: {str(e)}")
            return self._mock_slides(content)
    
    def _mock_slides(self, content):
        return f"""---
marp: true
theme: gaia
backgroundColor: #fff
backgroundImage: url('https://marp.app/assets/hero-background.svg')
---

# {content['workshop_title']}
## Comprehensive Corporate Training Program

---

## Module 1: Foundations of Prompt Engineering
![w:250](https://images.unsplash.com/photo-1677442135722-5fcdbdf1b7e6)

- Core concepts and principles
- Patterns and anti-patterns
- Practical implementation techniques

---

## Case Study
### Anthropic's Customer Support Implementation
- 40% faster resolution times
- 25% reduction in training costs
- 92% customer satisfaction

---

## Exercises
1. Craft effective prompts for different scenarios
2. Optimize prompts for specific AI models
3. Analyze and refine prompt performance

"""

class CodeAgent:
    def generate_code(self, content):
        if not openai_client:
            return self._mock_code(content)
            
        try:
            response = openai_client.chat.completions.create(
                model="gpt-4-turbo",
                messages=[
                    {
                        "role": "system",
                        "content": "You create practical code labs for technical workshops."
                    },
                    {
                        "role": "user",
                        "content": (
                            f"Create a Jupyter notebook with code exercises for this workshop: {json.dumps(content)}. "
                            "Include: setup instructions, practical exercises with solutions, "
                            "and real-world implementation examples. Use Python with popular AI libraries."
                        )
                    }
                ],
                temperature=0.3,
                max_tokens=2000
            )
            return response.choices[0].message.content
        except Exception as e:
            st.error(f"Code generation error: {str(e)}")
            return self._mock_code(content)
    
    def _mock_code(self, content):
        return f"""# {content['workshop_title']} - Code Labs

import openai
import pandas as pd

## Exercise 1: Basic Prompt Engineering
def generate_response(prompt):
    response = openai.chat.completions.create(
        model="gpt-4",
        messages=[{{"role": "user", "content": prompt}}]
    )
    return response.choices[0].message.content

# Test your function
print(generate_response("Explain quantum computing in simple terms"))

## Exercise 2: Advanced Prompt Patterns
# TODO: Implement chain-of-thought prompting
# TODO: Create meta-prompts for complex tasks

## Real-World Implementation
# TODO: Build a customer support question classifier
"""

class DesignAgent:
    def generate_design(self, slide_content):
        if not openai_client:
            return None
            
        try:
            response = openai_client.images.generate(
                prompt=f"Create a professional slide background for a corporate AI workshop about: {slide_content[:500]}",
                n=1,
                size="1024x1024"
            )
            return response.data[0].url
        except Exception as e:
            st.error(f"Design generation error: {str(e)}")
            return None

class VoiceoverAgent:
    def __init__(self):
        self.api_key = ELEVENLABS_API_KEY
        self.voice_id = "21m00Tcm4TlvDq8ikWAM"  # Default voice ID (Bella)
        self.model = "eleven_monolingual_v1"
        
    def generate_voiceover(self, text, voice_id=None):
        if not self.api_key:
            return None
            
        try:
            # Use custom voice if provided, otherwise use default
            voice = voice_id if voice_id else self.voice_id
            
            url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice}"
            headers = {
                "Accept": "audio/mpeg",
                "Content-Type": "application/json",
                "xi-api-key": self.api_key
            }
            data = {
                "text": text,
                "model_id": self.model,
                "voice_settings": {
                    "stability": 0.7,
                    "similarity_boost": 0.8,
                    "style": 0.5,
                    "use_speaker_boost": True
                }
            }
            response = requests.post(url, json=data, headers=headers)
            
            if response.status_code == 200:
                return response.content
            else:
                st.error(f"Voiceover API error: {response.status_code} - {response.text}")
                return None
        except Exception as e:
            st.error(f"Voiceover generation error: {str(e)}")
            return None
    
    def get_voices(self):
        if not self.api_key:
            return []
            
        try:
            url = "https://api.elevenlabs.io/v1/voices"
            headers = {"xi-api-key": self.api_key}
            response = requests.get(url, headers=headers)
            
            if response.status_code == 200:
                return response.json().get("voices", [])
            return []
        except Exception as e:
            st.error(f"Voice loading error: {str(e)}")
            return []

# Initialize agents
topic_agent = TopicAgent()
content_agent = ContentAgent()
slide_agent = SlideAgent()
code_agent = CodeAgent()
design_agent = DesignAgent()
voiceover_agent = VoiceoverAgent()

# =====================
# STREAMLIT APPLICATION
# =====================

st.set_page_config(
    page_title="Workshop in a Box Pro",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS with fixed input styling
st.markdown("""
<style>
    .stApp {
        background: linear-gradient(135deg, #6a11cb 0%, #2575fc 100%);
        color: #fff;
    }
    /* Fix for input text color */
    .stTextInput>div>div>input {
        color: #333 !important;
        background-color: #fff !important;
    }
    .stSlider>div>div>div>div {
        background-color: rgba(255,255,255,0.1) !important;
        color: white !important;
    }
    .stButton>button {
        background: linear-gradient(to right, #00b09b, #96c93d) !important;
        color: white !important;
        border: none;
        border-radius: 30px;
        padding: 10px 25px;
        font-size: 16px;
        font-weight: bold;
    }
    .stDownloadButton>button {
        background: linear-gradient(to right, #ff5e62, #ff9966) !important;
    }
    .stExpander {
        background-color: rgba(0,0,0,0.2) !important;
        border-radius: 10px;
        padding: 15px;
    }
    .audio-player {
        margin: 15px 0;
        border-radius: 10px;
        background: rgba(255,255,255,0.1);
        padding: 15px;
    }
    .voice-option {
        display: flex;
        align-items: center;
        margin: 5px 0;
        padding: 8px;
        border-radius: 8px;
        cursor: pointer;
        transition: background 0.3s;
    }
    .voice-option:hover {
        background: rgba(255,255,255,0.2);
    }
    .voice-option.selected {
        background: rgba(0,180,155,0.3);
        border: 2px solid #00b09b;
    }
    .voice-thumb {
        width: 40px;
        height: 40px;
        border-radius: 50%;
        margin-right: 10px;
        object-fit: cover;
    }
</style>
""", unsafe_allow_html=True)

# Header
col1, col2 = st.columns([1, 3])
with col1:
    st.image("https://cdn-icons-png.flaticon.com/512/1995/1995485.png", width=100)
with col2:
    st.title("πŸ€– Workshop in a Box Pro")
    st.caption("Generate Premium Corporate AI Training Workshops with Voiceovers")

# Initialize session state
if 'workshop_topic' not in st.session_state:
    st.session_state.workshop_topic = "Advanced Prompt Engineering"
if 'generated' not in st.session_state:
    st.session_state.generated = False
if 'generating' not in st.session_state:
    st.session_state.generating = False
if 'voiceovers' not in st.session_state:
    st.session_state.voiceovers = {}
if 'selected_voice' not in st.session_state:
    st.session_state.selected_voice = "21m00Tcm4TlvDq8ikWAM"  # Default voice ID

# Sidebar configuration
with st.sidebar:
    st.header("βš™οΈ Workshop Configuration")
    
    # Workshop topic input with session state
    st.session_state.workshop_topic = st.text_input(
        "Workshop Topic", 
        st.session_state.workshop_topic,
        key="topic_input",
        help="Enter the main topic for your workshop"
    )
    
    # Validate topic input
    if st.session_state.workshop_topic.strip() == "":
        st.warning("Please enter a workshop topic")
        st.stop()
    
    duration = st.slider("Duration (hours)", 1.0, 8.0, 3.0, 0.5)
    difficulty = st.selectbox("Difficulty Level", 
                            ["Beginner", "Intermediate", "Advanced", "Expert"])
    include_code = st.checkbox("Include Code Labs", True)
    include_design = st.checkbox("Generate Visual Designs", True)
    include_voiceover = st.checkbox("Generate Voiceovers", True)
    
    # Voice selection
    if include_voiceover:
        st.subheader("πŸŽ™οΈ Voice Selection")
        
        # Get available voices
        voices = voiceover_agent.get_voices()
        
        # If we have voices, let the user select one
        if voices:
            # Create 2 columns for voice selection
            cols = st.columns(2)
            for i, voice in enumerate(voices[:4]):  # Show first 4 voices
                with cols[i % 2]:
                    # Create a unique key for each voice button
                    voice_key = f"voice_{voice['voice_id']}"
                    
                    # Display voice option
                    if st.button(
                        f"πŸ—£οΈ {voice['name']}",
                        key=voice_key,
                        use_container_width=True,
                        help=f"Select {voice['name']} voice"
                    ):
                        st.session_state.selected_voice = voice['voice_id']
            
            # Show which voice is currently selected
            selected_voice_name = next((v['name'] for v in voices if v['voice_id'] == st.session_state.selected_voice), "Default")
            st.info(f"Selected Voice: **{selected_voice_name}**")
        else:
            if ELEVENLABS_API_KEY:
                st.warning("Couldn't load voices. Using default voice.")
            else:
                st.warning("ElevenLabs API key not set. Voiceovers disabled.")
    
    if st.button("✨ Generate Workshop", type="primary", use_container_width=True):
        st.session_state.generating = True
        st.session_state.voiceovers = {}  # Reset previous voiceovers

# Generation pipeline
if st.session_state.generating:
    with st.spinner(f"πŸš€ Creating your {st.session_state.workshop_topic} workshop..."):
        start_time = time.time()
        
        # Agent pipeline
        outline = topic_agent.generate_outline(st.session_state.workshop_topic, duration, difficulty)
        content = content_agent.generate_content(outline)
        slides = slide_agent.generate_slides(content)
        code_labs = code_agent.generate_code(content) if include_code else None
        design_url = design_agent.generate_design(slides) if include_design else None
        
        # Generate voiceovers if enabled
        voiceovers = {}
        if include_voiceover and ELEVENLABS_API_KEY:
            for i, module in enumerate(content.get("modules", [])):
                # Create a short intro for each module
                intro_text = f"Welcome to Module {i+1}: {module['title']}. " + \
                             f"In this module, we'll cover: {', '.join(module.get('speaker_notes', []))[:300]}"
                
                # Generate voiceover
                audio_data = voiceover_agent.generate_voiceover(
                    intro_text,
                    st.session_state.selected_voice
                )
                
                if audio_data:
                    voiceovers[f"module_{i+1}_intro.mp3"] = audio_data
        
        # Prepare download package
        zip_buffer = io.BytesIO()
        with zipfile.ZipFile(zip_buffer, "a") as zip_file:
            zip_file.writestr("outline.json", json.dumps(outline, indent=2))
            zip_file.writestr("content.json", json.dumps(content, indent=2))
            zip_file.writestr("slides.md", slides)
            if code_labs:
                zip_file.writestr("code_labs.ipynb", code_labs)
            if design_url:
                try:
                    img_data = requests.get(design_url).content
                    zip_file.writestr("slide_design.png", img_data)
                except:
                    pass
            # Add voiceovers to ZIP
            for filename, audio_data in voiceovers.items():
                zip_file.writestr(f"voiceovers/{filename}", audio_data)
        
        # Store results
        st.session_state.outline = outline
        st.session_state.content = content
        st.session_state.slides = slides
        st.session_state.code_labs = code_labs
        st.session_state.design_url = design_url
        st.session_state.voiceovers = voiceovers
        st.session_state.zip_buffer = zip_buffer
        st.session_state.gen_time = round(time.time() - start_time, 2)
        st.session_state.generated = True
        st.session_state.generating = False

# Results display
if st.session_state.generated:
    st.success(f"βœ… {st.session_state.workshop_topic} workshop generated in {st.session_state.gen_time} seconds!")
    
    # Download button
    st.download_button(
        label="πŸ“₯ Download Workshop Package",
        data=st.session_state.zip_buffer.getvalue(),
        file_name=f"{st.session_state.workshop_topic.replace(' ', '_')}_workshop.zip",
        mime="application/zip",
        use_container_width=True
    )
    
    # Preview sections
    with st.expander("πŸ“ Workshop Outline", expanded=True):
        st.json(st.session_state.outline)
    
    with st.expander("πŸ“„ Content Script"):
        st.write(st.session_state.content)
    
    with st.expander("πŸ–₯️ Slide Deck Preview"):
        st.markdown("```markdown\n" + textwrap.dedent(st.session_state.slides[:2000]) + "\n```")
    
    if st.session_state.code_labs:
        with st.expander("πŸ’» Code Labs"):
            st.code(st.session_state.code_labs)
    
    if st.session_state.design_url:
        with st.expander("🎨 Generated Design"):
            st.image(st.session_state.design_url, caption="Custom Slide Design")
    
    # Voiceover player
    if st.session_state.voiceovers:
        with st.expander("πŸ”Š Voiceover Previews"):
            for i, (filename, audio_bytes) in enumerate(st.session_state.voiceovers.items()):
                module_num = filename.split("_")[1]
                st.subheader(f"Module {module_num} Introduction")
                
                # Create an audio player for each voiceover
                st.audio(audio_bytes, format="audio/mp3")
                
                # Add download button for individual voiceover
                st.download_button(
                    label=f"Download Module {module_num} Voiceover",
                    data=audio_bytes,
                    file_name=filename,
                    mime="audio/mpeg",
                    key=f"voiceover_dl_{i}"
                )
    elif include_voiceover and ELEVENLABS_API_KEY:
        st.warning("Voiceovers not generated. Check your ElevenLabs API key.")

# Sales and booking section
st.divider()
st.subheader("πŸš€ Ready to Deliver This Workshop?")
st.markdown(f"""
### Premium {st.session_state.workshop_topic} Training Package
- **Live Workshop Delivery**: $10,000 per session
- **On-Demand Course**: $5,000 (unlimited access)
- **Pilot Program**: $1,000 refundable deposit
- **Voiceover Add-on**: $500 per module

✨ **All inclusive**: Customization, materials, and follow-up support
""")

col1, col2 = st.columns(2)
with col1:
    st.link_button("πŸ“… Book a Live Workshop", "https://calendly.com/your-link", 
                  use_container_width=True)
with col2:
    st.link_button("πŸ’³ Purchase On-Demand Course", "https://your-store.com", 
                  use_container_width=True)

# Debug info
with st.sidebar:
    st.divider()
    if openai_client:
        st.success("OpenAI API Connected")
    else:
        st.warning("OpenAI API not set - using enhanced mock data")
    
    if ELEVENLABS_API_KEY:
        st.success("ElevenLabs API Key Found")
    elif include_voiceover:
        st.warning("ElevenLabs API key not set")
    
    st.info(f"""
    **Current Workshop:**
    {st.session_state.workshop_topic}
    
    **Premium Features:**
    - AI-generated voiceovers
    - Professional slide designs
    - Real-world case studies
    - Practical code labs
    """)

# How it works section
st.divider()
st.subheader("πŸ’‘ How It Works")
st.markdown("""
1. **Configure** your workshop topic and parameters
2. **Generate** premium training materials with voiceovers
3. **Customize** the content to your specific needs
4. **Deliver** high-value corporate training at $10K/session
5. **Reuse** the materials for unlimited revenue

*"The voiceover feature helped me create on-demand courses that sold for $5K each"* - Michael L., AI Consultant
""")