File size: 8,325 Bytes
f0d7cfb
af64a0f
 
 
 
 
96005ed
 
 
 
 
 
 
f0d7cfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af64a0f
 
f0d7cfb
 
af64a0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96005ed
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# app.py
import streamlit as st
import json
import zipfile
import io
import time
import os
import openai
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Initialize OpenAI API key
if os.getenv("OPENAI_API_KEY"):
    openai.api_key = os.getenv("OPENAI_API_KEY")

# Combined agent classes
class TopicAgent:
    def generate_outline(self, topic, duration, difficulty):
        if not openai.api_key:
            return self._mock_outline(topic, duration, difficulty)
            
        try:
            response = openai.ChatCompletion.create(
                model="gpt-4",
                messages=[
                    {"role": "system", "content": "You're an expert corporate trainer creating AI workshop outlines"},
                    {"role": "user", "content": (
                        f"Create a {duration}-hour {difficulty} workshop outline on {topic}. "
                        "Include: 1) Key learning goals, 2) 4 modules with titles and durations, "
                        "3) Hands-on exercises per module. Output as JSON."
                    )}
                ]
            )
            return json.loads(response.choices[0].message.content)
        except:
            return self._mock_outline(topic, duration, difficulty)
    
    def _mock_outline(self, topic, duration, difficulty):
        return {
            "topic": topic,
            "duration": f"{duration} hours",
            "difficulty": difficulty,
            "goals": [
                f"Master advanced {topic} techniques",
                "Develop industry-specific applications",
                "Build and evaluate complex AI workflows",
                "Implement best practices for production"
            ],
            "modules": [
                {
                    "title": f"Fundamentals of {topic}",
                    "duration": "30 min",
                    "learning_points": [
                        "Core principles and terminology",
                        "Patterns and anti-patterns",
                        "Evaluation frameworks"
                    ]
                },
                {
                    "title": f"{topic} for Enterprise Applications",
                    "duration": "45 min",
                    "learning_points": [
                        "Industry-specific use cases",
                        "Integration with existing systems",
                        "Scalability considerations"
                    ]
                }
            ]
        }

class ContentAgent:
    def generate_content(self, outline):
        if not openai.api_key:
            return self._mock_content(outline)
            
        try:
            response = openai.ChatCompletion.create(
                model="gpt-4",
                messages=[
                    {"role": "system", "content": "You create detailed workshop content from outlines"},
                    {"role": "user", "content": (
                        f"Create workshop content from this outline: {json.dumps(outline)}. "
                        "Include: 1) Detailed scripts, 2) Speaker notes, 3) 3 quiz questions per module, "
                        "4) Hands-on exercises. Output as JSON."
                    )}
                ]
            )
            return json.loads(response.choices[0].message.content)
        except:
            return self._mock_content(outline)
    
    def _mock_content(self, outline):
        return {
            "workshop_title": f"Mastering {outline['topic']}",
            "modules": [
                {
                    "title": module["title"],
                    "script": f"Comprehensive script for {module['title']}...",
                    "speaker_notes": f"Key talking points: {', '.join(module['learning_points'])}",
                    "exercises": [f"Exercise about {point}" for point in module["learning_points"]],
                    "quiz": [
                        {
                            "question": f"Question about {module['title']}",
                            "options": ["A", "B", "C", "D"],
                            "answer": "A"
                        }
                    ]
                } for module in outline["modules"]
            ]
        }

class SlideAgent:
    def generate_slides(self, content):
        markdown_slides = f"# {content['workshop_title']}\n\n"
        for i, module in enumerate(content["modules"]):
            markdown_slides += f"## Module {i+1}: {module['title']}\n\n"
            markdown_slides += f"### Key Learning Points:\n- {module['speaker_notes']}\n\n"
            markdown_slides += "### Exercises:\n"
            for j, exercise in enumerate(module["exercises"]):
                markdown_slides += f"{j+1}. {exercise}\n"
            markdown_slides += "\n---\n"
        return markdown_slides

class CodeAgent:
    def generate_code(self, content):
        return f"# {content['workshop_title']} Code Labs\n\n" + \
               "import pandas as pd\n\n" + \
               "# Hands-on exercises for:\n" + \
               "\n".join([f"# - {module['title']}" for module in content["modules"]])

# Initialize agents
topic_agent = TopicAgent()
content_agent = ContentAgent()
slide_agent = SlideAgent()
code_agent = CodeAgent()

# Streamlit UI
st.set_page_config(page_title="Workshop in a Box", layout="wide")
st.title("πŸ€– Workshop in a Box")
st.caption("Generate corporate AI training workshops in minutes")

# Sidebar configuration
with st.sidebar:
    st.header("Configuration")
    workshop_topic = st.text_input("Workshop Topic", "Advanced Prompt Engineering")
    duration = st.slider("Duration (hours)", 1.0, 8.0, 2.0)
    difficulty = st.selectbox("Difficulty", ["Beginner", "Intermediate", "Advanced"])
    include_code = st.checkbox("Include Code Labs", True)
    
    if st.button("✨ Generate Workshop", type="primary"):
        with st.spinner("Creating your workshop materials..."):
            # Agent pipeline
            start_time = time.time()
            outline = topic_agent.generate_outline(workshop_topic, duration, difficulty)
            content = content_agent.generate_content(outline)
            slides = slide_agent.generate_slides(content)
            code_labs = code_agent.generate_code(content) if include_code else {}
            
            # Prepare download package
            zip_buffer = io.BytesIO()
            with zipfile.ZipFile(zip_buffer, "a") as zip_file:
                zip_file.writestr("outline.json", json.dumps(outline, indent=2))
                zip_file.writestr("content.json", json.dumps(content, indent=2))
                zip_file.writestr("slides.md", slides)
                if code_labs:
                    zip_file.writestr("code_labs.ipynb", code_labs)
            
            st.session_state.outline = outline
            st.session_state.content = content
            st.session_state.slides = slides
            st.session_state.code_labs = code_labs
            st.session_state.zip_buffer = zip_buffer
            st.session_state.gen_time = round(time.time() - start_time, 2)

# Results display
if "outline" in st.session_state:
    st.success(f"Generated workshop materials in {st.session_state.gen_time} seconds!")
    
    # Download button
    st.download_button(
        label="πŸ“₯ Download Workshop Package",
        data=st.session_state.zip_buffer.getvalue(),
        file_name=f"{workshop_topic.replace(' ', '_')}_workshop.zip",
        mime="application/zip"
    )
    
    # Preview sections
    with st.expander("Workshop Outline"):
        st.json(st.session_state.outline)
    
    with st.expander("Content Script"):
        st.write(st.session_state.content)
    
    with st.expander("Slide Deck Preview"):
        st.markdown(st.session_state.slides)
    
    if st.session_state.code_labs:
        with st.expander("Code Labs"):
            st.code(st.session_state.code_labs)

# Sales CTA
st.divider()
st.subheader("Ready to deliver this workshop?")
st.write("**$10K per corporate engagement | $1K refundable pilot deposit**")
st.link_button("πŸš€ Book Pilot Workshop", "https://calendly.com/your-link")

# Debug: Show API status
if os.getenv("OPENAI_API_KEY"):
    st.sidebar.success("OpenAI API connected")
else:
    st.sidebar.warning("OpenAI API not set - using mock data")