naso / app.py
mgbam's picture
Update app.py
a90e972 verified
raw
history blame
17.5 kB
import streamlit as st
import json
import zipfile
import io
import time
import os
import openai
import requests
from PIL import Image
import base64
import textwrap
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Initialize OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
# =============================
# ENHANCED AGENT IMPLEMENTATION
# =============================
class TopicAgent:
def generate_outline(self, topic, duration, difficulty):
if not openai.api_key:
return self._mock_outline(topic, duration, difficulty)
try:
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": "You're an expert corporate trainer creating comprehensive AI workshop outlines."
},
{
"role": "user",
"content": (
f"Create a detailed {duration}-hour {difficulty} workshop outline on {topic}. "
"Include: 4-6 modules with specific learning objectives, hands-on exercises, "
"and real-world case studies. Format as JSON with keys: "
"{'topic', 'duration', 'difficulty', 'goals', 'modules': ["
"{'title', 'duration', 'learning_objectives', 'case_study', 'exercises'}]}"
)
}
],
temperature=0.3,
max_tokens=1500
)
return json.loads(response.choices[0].message['content'])
except Exception as e:
st.error(f"Outline generation error: {str(e)}")
return self._mock_outline(topic, duration, difficulty)
def _mock_outline(self, topic, duration, difficulty):
return {
"topic": topic,
"duration": f"{duration} hours",
"difficulty": difficulty,
"goals": [
"Master core concepts and advanced techniques",
"Develop practical implementation skills",
"Learn industry best practices and case studies",
"Build confidence in real-world applications"
],
"modules": [
{
"title": "Foundations of Prompt Engineering",
"duration": "90 min",
"learning_objectives": [
"Understand prompt components and structure",
"Learn prompt patterns and anti-patterns",
"Master zero-shot and few-shot prompting"
],
"case_study": "How Anthropic improved customer support with prompt engineering",
"exercises": [
"Craft effective prompts for different scenarios",
"Optimize prompts for specific AI models"
]
},
{
"title": "Advanced Techniques & Strategies",
"duration": "120 min",
"learning_objectives": [
"Implement chain-of-thought prompting",
"Use meta-prompts for complex tasks",
"Apply self-consistency methods"
],
"case_study": "OpenAI's approach to prompt engineering in GPT-4",
"exercises": [
"Design prompts for multi-step reasoning",
"Create self-correcting prompt systems"
]
}
]
}
class ContentAgent:
def generate_content(self, outline):
if not openai.api_key:
return self._mock_content(outline)
try:
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": "You're a corporate training content developer creating detailed workshop materials."
},
{
"role": "user",
"content": (
f"Expand this workshop outline into comprehensive content: {json.dumps(outline)}. "
"For each module, include: detailed script (3-5 paragraphs), speaker notes (bullet points), "
"3 quiz questions with explanations, and exercise instructions. Format as JSON with keys: "
"{'workshop_title', 'modules': [{'title', 'script', 'speaker_notes', 'quiz': ["
"{'question', 'options', 'answer', 'explanation'}], 'exercise_instructions'}]}"
)
}
],
temperature=0.4,
max_tokens=2000
)
return json.loads(response.choices[0].message['content'])
except Exception as e:
st.error(f"Content generation error: {str(e)}")
return self._mock_content(outline)
def _mock_content(self, outline):
return {
"workshop_title": f"Mastering {outline['topic']}",
"modules": [
{
"title": "Foundations of Prompt Engineering",
"script": "This module introduces the core concepts of effective prompt engineering...",
"speaker_notes": [
"Emphasize the importance of clear instructions",
"Show examples of good vs bad prompts",
"Discuss token limitations and their impact"
],
"quiz": [
{
"question": "What's the most important element of a good prompt?",
"options": ["Length", "Specificity", "Complexity", "Creativity"],
"answer": "Specificity",
"explanation": "Specific prompts yield more accurate and relevant responses"
}
],
"exercise_instructions": "Create a prompt that extracts key insights from a financial report..."
}
]
}
class SlideAgent:
def generate_slides(self, content):
if not openai.api_key:
return self._mock_slides(content)
try:
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": "You create professional slide decks in Markdown format using Marp syntax."
},
{
"role": "user",
"content": (
f"Create a slide deck for this workshop content: {json.dumps(content)}. "
"Use Marp Markdown format with themes and visual elements. "
"Include: title slide, module slides with key points, case studies, "
"exercise instructions, and summary slides. Make it visually appealing."
)
}
],
temperature=0.2,
max_tokens=2500
)
return response.choices[0].message['content']
except Exception as e:
st.error(f"Slide generation error: {str(e)}")
return self._mock_slides(content)
def _mock_slides(self, content):
return f"""---
marp: true
theme: gaia
backgroundColor: #fff
backgroundImage: url('https://marp.app/assets/hero-background.svg')
---
# {content['workshop_title']}
## Comprehensive Corporate Training Program
---
## Module 1: Foundations of Prompt Engineering
![w:250](https://images.unsplash.com/photo-1677442135722-5fcdbdf1b7e6)
- Core concepts and principles
- Patterns and anti-patterns
- Practical implementation techniques
---
## Case Study
### Anthropic's Customer Support Implementation
- 40% faster resolution times
- 25% reduction in training costs
- 92% customer satisfaction
---
## Exercises
1. Craft effective prompts for different scenarios
2. Optimize prompts for specific AI models
3. Analyze and refine prompt performance
"""
class CodeAgent:
def generate_code(self, content):
if not openai.api_key:
return self._mock_code(content)
try:
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": "You create practical code labs for technical workshops."
},
{
"role": "user",
"content": (
f"Create a Jupyter notebook with code exercises for this workshop: {json.dumps(content)}. "
"Include: setup instructions, practical exercises with solutions, "
"and real-world implementation examples. Use Python with popular AI libraries."
)
}
],
temperature=0.3,
max_tokens=2000
)
return response.choices[0].message['content']
except Exception as e:
st.error(f"Code generation error: {str(e)}")
return self._mock_code(content)
def _mock_code(self, content):
return f"""# {content['workshop_title']} - Code Labs
import openai
import pandas as pd
## Exercise 1: Basic Prompt Engineering
def generate_response(prompt):
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{{"role": "user", "content": prompt}}]
)
return response.choices[0].message['content']
# Test your function
print(generate_response("Explain quantum computing in simple terms"))
## Exercise 2: Advanced Prompt Patterns
# TODO: Implement chain-of-thought prompting
# TODO: Create meta-prompts for complex tasks
## Real-World Implementation
# TODO: Build a customer support question classifier
"""
class DesignAgent:
def generate_design(self, slide_content):
if not openai.api_key:
return None
try:
response = openai.Image.create(
prompt=f"Create a professional slide background for a corporate AI workshop about: {slide_content[:500]}",
n=1,
size="1024x1024"
)
return response['data'][0]['url']
except Exception as e:
st.error(f"Design generation error: {str(e)}")
return None
# Initialize agents
topic_agent = TopicAgent()
content_agent = ContentAgent()
slide_agent = SlideAgent()
code_agent = CodeAgent()
design_agent = DesignAgent()
# =====================
# STREAMLIT APPLICATION
# =====================
st.set_page_config(
page_title="Workshop in a Box Pro",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.stApp {
background: linear-gradient(135deg, #6a11cb 0%, #2575fc 100%);
color: #fff;
}
.stTextInput>div>div>input, .stSlider>div>div>div>div {
background-color: rgba(255,255,255,0.1) !important;
color: white !important;
}
.stButton>button {
background: linear-gradient(to right, #00b09b, #96c93d) !important;
color: white !important;
border: none;
border-radius: 30px;
padding: 10px 25px;
font-size: 16px;
font-weight: bold;
}
.stDownloadButton>button {
background: linear-gradient(to right, #ff5e62, #ff9966) !important;
}
.stExpander {
background-color: rgba(0,0,0,0.2) !important;
border-radius: 10px;
padding: 15px;
}
</style>
""", unsafe_allow_html=True)
# Header
col1, col2 = st.columns([1, 3])
with col1:
st.image("https://cdn-icons-png.flaticon.com/512/1995/1995485.png", width=100)
with col2:
st.title("πŸ€– Workshop in a Box Pro")
st.caption("Generate Premium Corporate AI Training Workshops in Minutes")
# Sidebar configuration
with st.sidebar:
st.header("βš™οΈ Workshop Configuration")
workshop_topic = st.text_input("Workshop Topic", "Advanced Prompt Engineering")
duration = st.slider("Duration (hours)", 1.0, 8.0, 3.0, 0.5)
difficulty = st.selectbox("Difficulty Level",
["Beginner", "Intermediate", "Advanced", "Expert"])
include_code = st.checkbox("Include Code Labs", True)
include_design = st.checkbox("Generate Visual Designs", True)
if st.button("✨ Generate Workshop", type="primary", use_container_width=True):
st.session_state.generating = True
# Generation pipeline
if hasattr(st.session_state, 'generating'):
with st.spinner("πŸš€ Creating your premium workshop materials..."):
start_time = time.time()
# Agent pipeline
outline = topic_agent.generate_outline(workshop_topic, duration, difficulty)
content = content_agent.generate_content(outline)
slides = slide_agent.generate_slides(content)
code_labs = code_agent.generate_code(content) if include_code else None
design_url = design_agent.generate_design(slides) if include_design else None
# Prepare download package
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, "a") as zip_file:
zip_file.writestr("outline.json", json.dumps(outline, indent=2))
zip_file.writestr("content.json", json.dumps(content, indent=2))
zip_file.writestr("slides.md", slides)
if code_labs:
zip_file.writestr("code_labs.ipynb", code_labs)
if design_url:
try:
img_data = requests.get(design_url).content
zip_file.writestr("slide_design.png", img_data)
except:
pass
# Store results
st.session_state.outline = outline
st.session_state.content = content
st.session_state.slides = slides
st.session_state.code_labs = code_labs
st.session_state.design_url = design_url
st.session_state.zip_buffer = zip_buffer
st.session_state.gen_time = round(time.time() - start_time, 2)
st.session_state.generated = True
st.session_state.generating = False
# Results display
if hasattr(st.session_state, 'generated'):
st.success(f"βœ… Premium workshop materials generated in {st.session_state.gen_time} seconds!")
# Download button
st.download_button(
label="πŸ“₯ Download Workshop Package",
data=st.session_state.zip_buffer.getvalue(),
file_name=f"{workshop_topic.replace(' ', '_')}_workshop.zip",
mime="application/zip",
use_container_width=True
)
# Preview sections
with st.expander("πŸ“ Workshop Outline", expanded=True):
st.json(st.session_state.outline)
with st.expander("πŸ“„ Content Script"):
st.write(st.session_state.content)
with st.expander("πŸ–₯️ Slide Deck Preview"):
st.markdown("```markdown\n" + textwrap.dedent(st.session_state.slides[:2000]) + "\n```")
if st.session_state.code_labs:
with st.expander("πŸ’» Code Labs"):
st.code(st.session_state.code_labs)
if st.session_state.design_url:
with st.expander("🎨 Generated Design"):
st.image(st.session_state.design_url, caption="Custom Slide Design")
# Sales and booking section
st.divider()
st.subheader("πŸš€ Ready to Deliver This Workshop?")
st.markdown("""
### Premium Corporate Training Package
- **Live Workshop Delivery**: $10,000 per session
- **On-Demand Course**: $5,000 (unlimited access)
- **Pilot Program**: $1,000 refundable deposit
✨ **All inclusive**: Customization, materials, and follow-up support
""")
col1, col2 = st.columns(2)
with col1:
st.link_button("πŸ“… Book a Live Workshop", "https://calendly.com/your-link",
use_container_width=True)
with col2:
st.link_button("πŸ’³ Purchase On-Demand Course", "https://your-store.com",
use_container_width=True)
# Debug info
with st.sidebar:
st.divider()
if openai.api_key:
st.success("OpenAI API Connected")
else:
st.warning("OpenAI API not set - using enhanced mock data")
st.info("""
**Premium Features:**
- AI-generated slide designs
- Real-world case studies
- Practical code labs
- Professional templates
""")
# How it works section
st.divider()
st.subheader("πŸ’‘ How It Works")
st.markdown("""
1. **Configure** your workshop topic and parameters
2. **Generate** premium training materials in seconds
3. **Customize** the content to your specific needs
4. **Deliver** high-value corporate training at $10K/session
5. **Reuse** the materials for unlimited revenue
*"Created 3 workshops in 15 minutes and booked $30K in contracts"* - Sarah T., AI Training Consultant
""")