naso / app.py
mgbam's picture
Update app.py
b80eb6b verified
raw
history blame
4.34 kB
import os
import json
import tempfile
from zipfile import ZipFile
import gradio as gr
from agents import Agent, handoff, Runner
from agents.extensions.handoff_prompt import RECOMMENDED_PROMPT_PREFIX
from TTS.api import TTS
# Initialize Coqui TTS (Tacotron2-DDC)
tts = TTS(
model_name="tts_models/en/ljspeech/tacotron2-DDC",
progress_bar=False,
gpu=False
)
def generate_tts_audio(script: str) -> str:
"""
Synthesize speech using Coqui TTS and save to a WAV file.
Returns the local file path to the audio.
"""
out_path = os.path.join(tempfile.gettempdir(), "voiceover.wav")
tts.tts_to_file(text=script, file_path=out_path)
return out_path
# Agents definitions
topic_agent = Agent(
name="Topic Agent",
instructions=f"{RECOMMENDED_PROMPT_PREFIX}\n"
"You are given a workshop topic and audience. Draft a structured learning path: goals, 4 modules, and a hands-on exercise for each."
)
content_agent = Agent(
name="Content Agent",
instructions=f"{RECOMMENDED_PROMPT_PREFIX}\n"
"Convert the outline into detailed module scripts, speaker notes, and 3 quiz questions per module."
)
slide_agent = Agent(
name="Slide Agent",
instructions=f"{RECOMMENDED_PROMPT_PREFIX}\n"
"Given module content, produce slide JSON with title, bullet points, and design hints."
)
code_agent = Agent(
name="Code Agent",
instructions=f"{RECOMMENDED_PROMPT_PREFIX}\n"
"Generate runnable Python code snippets or a Colab notebook for hands-on labs in each module."
)
voice_agent = Agent(
name="Voiceover Agent",
instructions=f"{RECOMMENDED_PROMPT_PREFIX}\n"
"Create a 1-2 minute voiceover script. Return JSON with key 'script'."
)
# Orchestrator
document_orchestrator = Agent(
name="Workshop Orchestrator",
instructions="Invoke: topic_agent, content_agent, slide_agent, code_agent, voice_agent (optional); collect outputs.",
handoffs=[
handoff(topic_agent, name="outline"),
handoff(content_agent, name="content"),
handoff(slide_agent, name="slides"),
handoff(code_agent, name="code_labs"),
handoff(voice_agent, name="voiceover", optional=True),
]
)
runner = Runner()
def build_workshop_bundle(topic: str, audience: str):
prompt = f"Create a {topic} workshop for {audience}."
results = runner.run(document_orchestrator, prompt).outputs
# Synthesize voiceover
voice_info = results.get("voiceover", {})
audio_path = None
if isinstance(voice_info, dict) and "script" in voice_info:
audio_path = generate_tts_audio(voice_info["script"])
# Render slides
slides_json = results.get("slides", {})
with open("static/slides_template.html") as f:
template = f.read()
slide_html = template.replace("{{SLIDES_JSON}}", json.dumps(slides_json))
# Bundle into ZIP
tmpdir = tempfile.mkdtemp()
zip_path = os.path.join(tmpdir, "workshop_bundle.zip")
with ZipFile(zip_path, "w") as zipf:
for name, content in [
("workshop_outputs.json", json.dumps(results, indent=2)),
("slides.json", json.dumps(slides_json, indent=2)),
("slides.html", slide_html),
("code_labs.py", results.get("code_labs", "")),
]:
p = os.path.join(tmpdir, name)
with open(p, "w") as file:
file.write(content)
zipf.write(p, arcname=name)
if audio_path and os.path.exists(audio_path):
zipf.write(audio_path, os.path.basename(audio_path))
return slide_html, audio_path, zip_path
# Gradio UI
def run_app(topic, audience):
return build_workshop_bundle(topic, audience)
with gr.Blocks(title="πŸš€ Workshop in a Box") as demo:
gr.Markdown("# Workshop in a Box")
topic = gr.Textbox(label="Workshop Topic", placeholder="e.g., AI Agents 101")
audience = gr.Textbox(label="Audience", placeholder="e.g., Product Managers")
btn = gr.Button("Generate Workshop")
slide_preview = gr.HTML(label="Slide Preview")
audio_player = gr.Audio(label="Voiceover Preview", interactive=True)
download = gr.File(label="Download ZIP")
btn.click(fn=run_app, inputs=[topic, audience], outputs=[slide_preview, audio_player, download])
if __name__ == "__main__":
demo.launch()