Update agents/agents.py
Browse files- agents/agents.py +377 -385
agents/agents.py
CHANGED
@@ -1,409 +1,401 @@
|
|
1 |
-
import streamlit as st
|
2 |
import json
|
3 |
-
import
|
4 |
-
import io
|
5 |
-
import time
|
6 |
-
import textwrap
|
7 |
import requests
|
8 |
-
from
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
content_agent = ContentAgent()
|
13 |
-
slide_agent = SlideAgent()
|
14 |
-
code_agent = CodeAgent()
|
15 |
-
design_agent = DesignAgent()
|
16 |
-
voiceover_agent = VoiceoverAgent()
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
}
|
58 |
-
.stDownloadButton>button {
|
59 |
-
background: linear-gradient(to right, #00c853, #64dd17) !important;
|
60 |
-
}
|
61 |
-
.stExpander {
|
62 |
-
background: rgba(15, 32, 39, 0.8) !important;
|
63 |
-
border-radius: 10px;
|
64 |
-
padding: 20px;
|
65 |
-
border: 1px solid #1e88e5;
|
66 |
-
box-shadow: 0 4px 20px rgba(0,0,0,0.25);
|
67 |
-
}
|
68 |
-
.premium-badge {
|
69 |
-
background: linear-gradient(45deg, #ffd700, #ff9800);
|
70 |
-
color: #000;
|
71 |
-
padding: 3px 10px;
|
72 |
-
border-radius: 12px;
|
73 |
-
font-size: 0.8em;
|
74 |
-
font-weight: bold;
|
75 |
-
display: inline-block;
|
76 |
-
margin-left: 10px;
|
77 |
-
}
|
78 |
-
.section-header {
|
79 |
-
border-left: 4px solid #0d8bf2;
|
80 |
-
padding-left: 15px;
|
81 |
-
margin-top: 30px;
|
82 |
-
}
|
83 |
-
.testimonial {
|
84 |
-
background: rgba(255,255,255,0.05);
|
85 |
-
border-radius: 10px;
|
86 |
-
padding: 15px;
|
87 |
-
margin: 15px 0;
|
88 |
-
border-left: 4px solid #00c853;
|
89 |
-
}
|
90 |
-
.pricing-card {
|
91 |
-
background: rgba(255,255,255,0.05);
|
92 |
-
border-radius: 10px;
|
93 |
-
padding: 20px;
|
94 |
-
margin: 10px 0;
|
95 |
-
border: 1px solid #0d8bf2;
|
96 |
-
}
|
97 |
-
.executive-summary {
|
98 |
-
background: linear-gradient(to right, #1a2980, #26d0ce);
|
99 |
-
padding: 25px;
|
100 |
-
border-radius: 15px;
|
101 |
-
margin-bottom: 25px;
|
102 |
-
box-shadow: 0 10px 20px rgba(0,0,0,0.2);
|
103 |
-
}
|
104 |
-
.sidebar-section {
|
105 |
-
padding: 15px;
|
106 |
-
background: rgba(255,255,255,0.05);
|
107 |
-
border-radius: 10px;
|
108 |
-
margin-bottom: 15px;
|
109 |
-
}
|
110 |
-
</style>
|
111 |
-
""", unsafe_allow_html=True)
|
112 |
-
|
113 |
-
# Header
|
114 |
-
col1, col2 = st.columns([1, 4])
|
115 |
-
with col1:
|
116 |
-
st.image("https://cdn-icons-png.flaticon.com/512/1995/1995485.png", width=80)
|
117 |
-
with col2:
|
118 |
-
st.title("🤖 Workshop in a Box Pro")
|
119 |
-
st.markdown("Generate Boardroom-Quality Corporate Training <span class='premium-badge'>PREMIUM</span>", unsafe_allow_html=True)
|
120 |
-
st.caption("Create $10K+ Value Workshops in Minutes")
|
121 |
-
|
122 |
-
# Initialize session state
|
123 |
-
if 'workshop_topic' not in st.session_state:
|
124 |
-
st.session_state.workshop_topic = "AI-Driven Business Transformation"
|
125 |
-
if 'generated' not in st.session_state:
|
126 |
-
st.session_state.generated = False
|
127 |
-
if 'generating' not in st.session_state:
|
128 |
-
st.session_state.generating = False
|
129 |
-
if 'voiceovers' not in st.session_state:
|
130 |
-
st.session_state.voiceovers = {}
|
131 |
-
if 'selected_voice' not in st.session_state:
|
132 |
-
st.session_state.selected_voice = "21m00Tcm4TlvDq8ikWAM" # Default voice ID
|
133 |
-
|
134 |
-
# Sidebar configuration
|
135 |
-
with st.sidebar:
|
136 |
-
st.header("⚙️ Executive Workshop Configuration")
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
st.error("Please enter a workshop focus")
|
202 |
-
else:
|
203 |
-
st.session_state.generating = True
|
204 |
-
st.session_state.voiceovers = {} # Reset previous voiceovers
|
205 |
-
|
206 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
207 |
|
208 |
-
#
|
209 |
-
|
210 |
-
with st.spinner(f"🚀 Creating your executive workshop on '{st.session_state.workshop_topic}'..."):
|
211 |
-
start_time = time.time()
|
212 |
-
|
213 |
-
# Agent pipeline
|
214 |
-
outline = topic_agent.generate_outline(st.session_state.workshop_topic, duration, difficulty)
|
215 |
-
content = content_agent.generate_content(outline)
|
216 |
-
slides = slide_agent.generate_slides(content)
|
217 |
-
code_labs = code_agent.generate_code(content) if include_code else None
|
218 |
-
design_url = design_agent.generate_design(slides) if include_design else None
|
219 |
-
|
220 |
-
# Generate voiceovers if enabled
|
221 |
-
voiceovers = {}
|
222 |
-
if include_voiceover and voiceover_agent.api_key:
|
223 |
-
for i, module in enumerate(content.get("modules", [])):
|
224 |
-
intro_text = f"Module {i+1}: {module['title']}. " + \
|
225 |
-
f"Key concepts: {', '.join(module.get('learning_points', [''])[:3])}"
|
226 |
-
audio_data = voiceover_agent.generate_voiceover(
|
227 |
-
intro_text,
|
228 |
-
st.session_state.selected_voice
|
229 |
-
)
|
230 |
-
if audio_data:
|
231 |
-
voiceovers[f"module_{i+1}_intro.mp3"] = audio_data
|
232 |
-
|
233 |
-
# Prepare download package
|
234 |
-
zip_buffer = io.BytesIO()
|
235 |
-
with zipfile.ZipFile(zip_buffer, "a", zipfile.ZIP_DEFLATED) as zip_file:
|
236 |
-
zip_file.writestr("executive_summary.json", json.dumps(outline, indent=2))
|
237 |
-
zip_file.writestr("workshop_content.json", json.dumps(content, indent=2))
|
238 |
-
zip_file.writestr("boardroom_slides.md", slides)
|
239 |
-
if code_labs:
|
240 |
-
zip_file.writestr("enterprise_solutions.ipynb", code_labs)
|
241 |
-
if design_url:
|
242 |
-
try:
|
243 |
-
img_data = requests.get(design_url).content
|
244 |
-
zip_file.writestr("slide_design.png", img_data)
|
245 |
-
except Exception as e:
|
246 |
-
st.error(f"Design download error: {str(e)}")
|
247 |
-
# Add voiceovers to ZIP
|
248 |
-
for filename, audio_data in voiceovers.items():
|
249 |
-
zip_file.writestr(f"voiceovers/{filename}", audio_data)
|
250 |
-
|
251 |
-
# Store results
|
252 |
-
st.session_state.outline = outline
|
253 |
-
st.session_state.content = content
|
254 |
-
st.session_state.slides = slides
|
255 |
-
st.session_state.code_labs = code_labs
|
256 |
-
st.session_state.design_url = design_url
|
257 |
-
st.session_state.voiceovers = voiceovers
|
258 |
-
st.session_state.zip_buffer = zip_buffer
|
259 |
-
st.session_state.gen_time = round(time.time() - start_time, 2)
|
260 |
-
st.session_state.generated = True
|
261 |
-
st.session_state.generating = False
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
# Download button
|
268 |
-
st.download_button(
|
269 |
-
label="📥 Download Executive Package",
|
270 |
-
data=st.session_state.zip_buffer.getvalue(),
|
271 |
-
file_name=f"{st.session_state.workshop_topic.replace(' ', '_')}_workshop.zip",
|
272 |
-
mime="application/zip",
|
273 |
-
use_container_width=True
|
274 |
-
)
|
275 |
-
|
276 |
-
# Executive summary
|
277 |
-
with st.expander("📊 Executive Overview", expanded=True):
|
278 |
-
st.markdown(f"<div class='executive-summary'>", unsafe_allow_html=True)
|
279 |
-
st.subheader(st.session_state.outline.get("title", "Strategic Workshop"))
|
280 |
-
st.caption(f"Duration: {st.session_state.outline.get('duration', '4 hours')} | Level: {st.session_state.outline.get('difficulty', 'Executive')}")
|
281 |
-
|
282 |
-
st.markdown("**Business Value Proposition**")
|
283 |
-
if "learning_goals" in st.session_state.outline:
|
284 |
-
for goal in st.session_state.outline["learning_goals"]:
|
285 |
-
st.markdown(f"- {goal}")
|
286 |
-
|
287 |
-
st.markdown("**Key Deliverables**")
|
288 |
-
st.markdown("- Boardroom-ready presentation\n"
|
289 |
-
"- Implementation toolkit\n"
|
290 |
-
"- ROI calculation framework\n"
|
291 |
-
"- Enterprise integration guide")
|
292 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
293 |
|
294 |
-
|
295 |
-
with st.expander("📝 Strategic Content Framework"):
|
296 |
-
if "modules" in st.session_state.content:
|
297 |
-
for module in st.session_state.content["modules"]:
|
298 |
-
st.subheader(module.get("title", "Business Module"))
|
299 |
-
st.markdown(module.get("script", ""))
|
300 |
-
|
301 |
-
st.markdown("**Executive Discussion Points**")
|
302 |
-
if "discussion_questions" in module:
|
303 |
-
for q in module["discussion_questions"]:
|
304 |
-
st.markdown(f"- **{q.get('question', '')}**")
|
305 |
-
st.caption(q.get("response", ""))
|
306 |
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
st.code(st.session_state.code_labs)
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
except:
|
322 |
-
st.warning("Design preview unavailable")
|
323 |
-
|
324 |
-
# Voiceover player
|
325 |
-
if st.session_state.voiceovers:
|
326 |
-
with st.expander("🔊 Voiceover Previews"):
|
327 |
-
for i, (filename, audio_bytes) in enumerate(st.session_state.voiceovers.items()):
|
328 |
-
module_num = filename.split("_")[1]
|
329 |
-
st.subheader(f"Module {module_num} Introduction")
|
330 |
-
st.audio(audio_bytes, format="audio/mp3")
|
331 |
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
<p>Full-day session with Q&A</p>
|
341 |
-
</div>
|
342 |
-
<div class="pricing-card">
|
343 |
-
<h4>On-Demand Course</h4>
|
344 |
-
<h2>$7,500</h2>
|
345 |
-
<p>Enterprise-wide access</p>
|
346 |
-
</div>
|
347 |
-
<div class="pricing-card">
|
348 |
-
<h4>Implementation Package</h4>
|
349 |
-
<h2>$12,500</h2>
|
350 |
-
<p>Technical integration support</p>
|
351 |
-
</div>
|
352 |
|
353 |
-
|
354 |
-
- Customized to your industry vertical
|
355 |
-
- ROI guarantee
|
356 |
-
- 12-month support agreement
|
357 |
-
- Executive briefing package
|
358 |
-
""", unsafe_allow_html=True)
|
359 |
|
360 |
-
|
361 |
-
st.divider()
|
362 |
-
st.subheader("💼 Executive Testimonials")
|
363 |
-
st.markdown("""
|
364 |
-
<div class="testimonial">
|
365 |
-
<p>"This platform helped us create a $50K training program in one afternoon. The ROI was immediate."</p>
|
366 |
-
<p><strong>— Sarah Johnson, CLO at FinTech Global</strong></p>
|
367 |
-
</div>
|
368 |
-
<div class="testimonial">
|
369 |
-
<p>"The boardroom-quality materials impressed our clients and justified our premium pricing."</p>
|
370 |
-
<p><strong>— Michael Chen, Partner at McKinsey & Company</strong></p>
|
371 |
-
</div>
|
372 |
-
""", unsafe_allow_html=True)
|
373 |
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
with col1:
|
378 |
-
st.link_button("📅 Book Strategy Session", "https://calendly.com/your-link", use_container_width=True)
|
379 |
-
with col2:
|
380 |
-
st.link_button("💼 Enterprise Solutions", "https://your-company.com/enterprise", use_container_width=True)
|
381 |
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
st.warning("ElevenLabs API key not set")
|
399 |
|
400 |
-
|
401 |
-
|
402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
+
import os
|
|
|
|
|
|
|
3 |
import requests
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from openai import OpenAI
|
6 |
|
7 |
+
# Load environment variables
|
8 |
+
load_dotenv()
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Initialize API clients
|
11 |
+
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) if os.getenv("OPENAI_API_KEY") else None
|
12 |
+
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
|
13 |
|
14 |
+
class TopicAgent:
|
15 |
+
def generate_outline(self, topic, duration, difficulty):
|
16 |
+
if not openai_client:
|
17 |
+
return self._mock_outline(topic, duration, difficulty)
|
18 |
+
|
19 |
+
try:
|
20 |
+
response = openai_client.chat.completions.create(
|
21 |
+
model="gpt-4-turbo",
|
22 |
+
messages=[
|
23 |
+
{
|
24 |
+
"role": "system",
|
25 |
+
"content": (
|
26 |
+
"You are an expert corporate trainer with 20+ years of experience creating "
|
27 |
+
"high-value workshops for Fortune 500 companies. Create a professional workshop outline that "
|
28 |
+
"includes: 1) Clear learning objectives, 2) Practical real-world exercises, "
|
29 |
+
"3) Industry case studies, 4) Measurable outcomes. Format as JSON."
|
30 |
+
)
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"role": "user",
|
34 |
+
"content": (
|
35 |
+
f"Create a comprehensive {duration}-hour {difficulty} workshop outline on '{topic}' for corporate executives. "
|
36 |
+
"Structure: title, duration, difficulty, learning_goals (3-5 bullet points), "
|
37 |
+
"modules (5-7 modules). Each module should have: title, duration, learning_points (3 bullet points), "
|
38 |
+
"case_study (real company example), exercises (2 practical exercises)."
|
39 |
+
)
|
40 |
+
}
|
41 |
+
],
|
42 |
+
temperature=0.3,
|
43 |
+
max_tokens=1500,
|
44 |
+
response_format={"type": "json_object"}
|
45 |
+
)
|
46 |
+
return json.loads(response.choices[0].message.content)
|
47 |
+
except Exception as e:
|
48 |
+
return self._mock_outline(topic, duration, difficulty)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
def _mock_outline(self, topic, duration, difficulty):
|
51 |
+
return {
|
52 |
+
"title": f"Mastering {topic} for Business Impact",
|
53 |
+
"duration": f"{duration} hours",
|
54 |
+
"difficulty": difficulty,
|
55 |
+
"learning_goals": [
|
56 |
+
"Apply advanced techniques to real business challenges",
|
57 |
+
"Measure ROI of prompt engineering initiatives",
|
58 |
+
"Develop organizational prompt engineering standards",
|
59 |
+
"Implement ethical AI governance frameworks"
|
60 |
+
],
|
61 |
+
"modules": [
|
62 |
+
{
|
63 |
+
"title": "Strategic Foundations",
|
64 |
+
"duration": "45 min",
|
65 |
+
"learning_points": [
|
66 |
+
"Business value assessment framework",
|
67 |
+
"ROI calculation models",
|
68 |
+
"Stakeholder alignment strategies"
|
69 |
+
],
|
70 |
+
"case_study": "How JPMorgan reduced operational costs by 37% with prompt optimization",
|
71 |
+
"exercises": [
|
72 |
+
"Calculate potential ROI for your organization",
|
73 |
+
"Develop stakeholder communication plan"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"title": "Advanced Pattern Engineering",
|
78 |
+
"duration": "60 min",
|
79 |
+
"learning_points": [
|
80 |
+
"Chain-of-thought implementations",
|
81 |
+
"Self-correcting prompt architectures",
|
82 |
+
"Domain-specific pattern libraries"
|
83 |
+
],
|
84 |
+
"case_study": "McKinsey's knowledge management transformation",
|
85 |
+
"exercises": [
|
86 |
+
"Design pattern library for your industry",
|
87 |
+
"Implement self-correction workflow"
|
88 |
+
]
|
89 |
+
}
|
90 |
+
]
|
91 |
+
}
|
92 |
+
|
93 |
+
class ContentAgent:
|
94 |
+
def generate_content(self, outline):
|
95 |
+
if not openai_client:
|
96 |
+
return self._mock_content(outline)
|
97 |
+
|
98 |
+
try:
|
99 |
+
response = openai_client.chat.completions.create(
|
100 |
+
model="gpt-4-turbo",
|
101 |
+
messages=[
|
102 |
+
{
|
103 |
+
"role": "system",
|
104 |
+
"content": (
|
105 |
+
"You are a senior instructional designer creating premium corporate training materials. "
|
106 |
+
"Develop comprehensive workshop content with: 1) Practitioner-level insights, "
|
107 |
+
"2) Actionable frameworks, 3) Real-world examples, 4) Practical exercises. "
|
108 |
+
"Avoid generic AI content - focus on business impact."
|
109 |
+
)
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"role": "user",
|
113 |
+
"content": (
|
114 |
+
f"Create premium workshop content for this outline: {json.dumps(outline)}. "
|
115 |
+
"For each module: "
|
116 |
+
"1) Detailed script (executive summary, 3 key concepts, business applications) "
|
117 |
+
"2) Speaker notes (presentation guidance) "
|
118 |
+
"3) 3 discussion questions with executive-level responses "
|
119 |
+
"4) 2 practical exercises with solution blueprints "
|
120 |
+
"Format as JSON."
|
121 |
+
)
|
122 |
+
}
|
123 |
+
],
|
124 |
+
temperature=0.4,
|
125 |
+
max_tokens=3000,
|
126 |
+
response_format={"type": "json_object"}
|
127 |
+
)
|
128 |
+
return json.loads(response.choices[0].message.content)
|
129 |
+
except Exception as e:
|
130 |
+
return self._mock_content(outline)
|
131 |
|
132 |
+
def _mock_content(self, outline):
|
133 |
+
return {
|
134 |
+
"workshop_title": outline.get("title", "Premium AI Workshop"),
|
135 |
+
"modules": [
|
136 |
+
{
|
137 |
+
"title": "Strategic Foundations",
|
138 |
+
"script": (
|
139 |
+
"## Executive Summary\n"
|
140 |
+
"This module establishes the business case for advanced prompt engineering, "
|
141 |
+
"focusing on measurable ROI and stakeholder alignment.\n\n"
|
142 |
+
"### Key Concepts:\n"
|
143 |
+
"1. **Value Assessment Framework**: Quantify potential savings and revenue opportunities\n"
|
144 |
+
"2. **ROI Calculation Models**: Custom models for different industries\n"
|
145 |
+
"3. **Stakeholder Alignment**: Executive communication strategies\n\n"
|
146 |
+
"### Business Applications:\n"
|
147 |
+
"- Cost reduction in customer service operations\n"
|
148 |
+
"- Acceleration of R&D processes\n"
|
149 |
+
"- Enhanced competitive intelligence"
|
150 |
+
),
|
151 |
+
"speaker_notes": [
|
152 |
+
"Emphasize real dollar impact - use JPMorgan case study numbers",
|
153 |
+
"Show ROI calculator template",
|
154 |
+
"Highlight C-suite communication strategies"
|
155 |
+
],
|
156 |
+
"discussion_questions": [
|
157 |
+
{
|
158 |
+
"question": "How could prompt engineering impact your bottom line?",
|
159 |
+
"response": "Typical results: 30-40% operational efficiency gains, 15-25% innovation acceleration"
|
160 |
+
}
|
161 |
+
],
|
162 |
+
"exercises": [
|
163 |
+
{
|
164 |
+
"title": "ROI Calculation Workshop",
|
165 |
+
"instructions": "Calculate potential savings using our enterprise ROI model",
|
166 |
+
"solution": "Template: (Current Cost × Efficiency Gain) - Implementation Cost"
|
167 |
+
}
|
168 |
+
]
|
169 |
+
}
|
170 |
+
]
|
171 |
+
}
|
172 |
+
|
173 |
+
class SlideAgent:
|
174 |
+
def generate_slides(self, content):
|
175 |
+
if not openai_client:
|
176 |
+
return self._professional_slides(content)
|
177 |
|
178 |
+
try:
|
179 |
+
response = openai_client.chat.completions.create(
|
180 |
+
model="gpt-4-turbo",
|
181 |
+
messages=[
|
182 |
+
{
|
183 |
+
"role": "system",
|
184 |
+
"content": (
|
185 |
+
"You are a McKinsey-level presentation specialist. Create professional slides with: "
|
186 |
+
"1) Clean, executive-friendly design 2) Data visualization frameworks "
|
187 |
+
"3) Action-oriented content 4) Brand-compliant styling. "
|
188 |
+
"Use Marp Markdown format with the 'gaia' theme."
|
189 |
+
)
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"role": "user",
|
193 |
+
"content": (
|
194 |
+
f"Create a boardroom-quality slide deck for: {json.dumps(content)}. "
|
195 |
+
"Structure: Title slide, module slides (objective, 3 key points, case study, exercise), "
|
196 |
+
"summary slide. Include placeholders for data visualization."
|
197 |
+
)
|
198 |
+
}
|
199 |
+
],
|
200 |
+
temperature=0.2,
|
201 |
+
max_tokens=2500
|
202 |
+
)
|
203 |
+
return response.choices[0].message.content
|
204 |
+
except Exception as e:
|
205 |
+
return self._professional_slides(content)
|
206 |
|
207 |
+
def _professional_slides(self, content):
|
208 |
+
return f"""---
|
209 |
+
marp: true
|
210 |
+
theme: gaia
|
211 |
+
class: lead
|
212 |
+
paginate: true
|
213 |
+
backgroundColor: #fff
|
214 |
+
backgroundImage: url('https://marp.app/assets/hero-background.svg')
|
215 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
+
# {content.get('workshop_title', 'Executive AI Workshop')}
|
218 |
+
## Transforming Business Through Advanced AI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
+
---
|
221 |
+
<!-- _class: invert -->
|
222 |
+
## Module 1: Strategic Foundations
|
223 |
+
### Driving Measurable Business Value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
+

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
+
- **ROI Framework**: Quantifying impact
|
228 |
+
- **Stakeholder Alignment**: Executive buy-in strategies
|
229 |
+
- **Implementation Roadmap**: Phased adoption plan
|
230 |
|
231 |
+
---
|
232 |
+
## Case Study: Financial Services Transformation
|
233 |
+
### JPMorgan Chase
|
|
|
234 |
|
235 |
+
| Metric | Before | After | Improvement |
|
236 |
+
|--------|--------|-------|-------------|
|
237 |
+
| Operation Costs | $4.2M | $2.6M | 38% reduction |
|
238 |
+
| Process Time | 14 days | 3 days | 79% faster |
|
239 |
+
| Error Rate | 8.2% | 0.4% | 95% reduction |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
+
---
|
242 |
+
## Practical Exercise: ROI Calculation
|
243 |
+
```mermaid
|
244 |
+
graph TD
|
245 |
+
A[Current Costs] --> B[Potential Savings]
|
246 |
+
C[Implementation Costs] --> D[Net ROI]
|
247 |
+
B --> D
|
248 |
+
Document current process costs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
Estimate efficiency gains
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
+
Calculate net ROI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
+
Q&A
|
255 |
+
Let's discuss your specific challenges
|
256 |
+
"""
|
|
|
|
|
|
|
|
|
257 |
|
258 |
+
class CodeAgent:
|
259 |
+
def generate_code(self, content):
|
260 |
+
if not openai_client:
|
261 |
+
return self._professional_code(content)
|
262 |
+
|
263 |
+
try:
|
264 |
+
response = openai_client.chat.completions.create(
|
265 |
+
model="gpt-4-turbo",
|
266 |
+
messages=[
|
267 |
+
{
|
268 |
+
"role": "system",
|
269 |
+
"content": (
|
270 |
+
"You are an enterprise solutions architect. Create professional-grade code labs with: "
|
271 |
+
"1) Production-ready patterns 2) Comprehensive documentation "
|
272 |
+
"3) Enterprise security practices 4) Scalable architectures. "
|
273 |
+
"Use Python with the latest best practices."
|
274 |
+
)
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"role": "user",
|
278 |
+
"content": (
|
279 |
+
f"Create a professional code lab for: {json.dumps(content)}. "
|
280 |
+
"Include: Setup instructions, business solution patterns, "
|
281 |
+
"enterprise integration examples, and security best practices."
|
282 |
+
)
|
283 |
+
}
|
284 |
+
],
|
285 |
+
temperature=0.3,
|
286 |
+
max_tokens=2500
|
287 |
+
)
|
288 |
+
return response.choices[0].message.content
|
289 |
+
except Exception as e:
|
290 |
+
return self._professional_code(content)
|
291 |
|
292 |
+
def _professional_code(self, content):
|
293 |
+
return f"""# Enterprise-Grade Prompt Engineering Lab
|
294 |
+
Business Solution Framework
|
295 |
+
python
|
296 |
+
class PromptOptimizer:
|
297 |
+
def __init__(self, model="gpt-4-turbo"):
|
298 |
+
self.model = model
|
299 |
+
self.pattern_library = {{
|
300 |
+
"financial_analysis": "Extract key metrics from financial reports",
|
301 |
+
"customer_service": "Resolve tier-2 support tickets"
|
302 |
+
}}
|
303 |
|
304 |
+
def optimize_prompt(self, business_case):
|
305 |
+
# Implement enterprise optimization logic
|
306 |
+
return f"Business-optimized prompt for {{business_case}}"
|
|
|
307 |
|
308 |
+
def calculate_roi(self, current_cost, expected_efficiency):
|
309 |
+
return current_cost * expected_efficiency
|
310 |
+
|
311 |
+
# Example usage
|
312 |
+
optimizer = PromptOptimizer()
|
313 |
+
print(optimizer.calculate_roi(500000, 0.35)) # $175,000 savings
|
314 |
+
|
315 |
+
Security Best Practices
|
316 |
+
python
|
317 |
+
def secure_prompt_handling(user_input):
|
318 |
+
# Implement OWASP security standards
|
319 |
+
sanitized = sanitize_input(user_input)
|
320 |
+
validate_business_context(sanitized)
|
321 |
+
return apply_enterprise_guardrails(sanitized)
|
322 |
+
|
323 |
+
Integration Pattern: CRM System
|
324 |
+
python
|
325 |
+
def integrate_with_salesforce(prompt, salesforce_data):
|
326 |
+
# Enterprise integration example
|
327 |
+
enriched_prompt = f"{{prompt}} using {{salesforce_data}}"
|
328 |
+
return call_ai_api(enriched_prompt)
|
329 |
+
"""
|
330 |
+
|
331 |
+
class DesignAgent:
|
332 |
+
def generate_design(self, slide_content):
|
333 |
+
if not openai_client:
|
334 |
+
return None
|
335 |
+
|
336 |
+
try:
|
337 |
+
response = openai_client.images.generate(
|
338 |
+
model="dall-e-3",
|
339 |
+
prompt=(
|
340 |
+
f"Professional corporate slide background for '{slide_content[:200]}' workshop. "
|
341 |
+
"Modern business style, clean lines, premium gradient, boardroom appropriate. "
|
342 |
+
"Include abstract technology elements in corporate colors."
|
343 |
+
),
|
344 |
+
n=1,
|
345 |
+
size="1024x1024"
|
346 |
+
)
|
347 |
+
return response.data[0].url
|
348 |
+
except Exception as e:
|
349 |
+
return None
|
350 |
+
|
351 |
+
class VoiceoverAgent:
|
352 |
+
def __init__(self):
|
353 |
+
self.api_key = ELEVENLABS_API_KEY
|
354 |
+
self.voice_id = "21m00Tcm4TlvDq8ikWAM" # Default voice ID
|
355 |
+
self.model = "eleven_monolingual_v1"
|
356 |
+
|
357 |
+
def generate_voiceover(self, text, voice_id=None):
|
358 |
+
if not self.api_key:
|
359 |
+
return None
|
360 |
+
|
361 |
+
try:
|
362 |
+
voice = voice_id if voice_id else self.voice_id
|
363 |
+
|
364 |
+
url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice}"
|
365 |
+
headers = {
|
366 |
+
"Accept": "audio/mpeg",
|
367 |
+
"Content-Type": "application/json",
|
368 |
+
"xi-api-key": self.api_key
|
369 |
+
}
|
370 |
+
data = {
|
371 |
+
"text": text,
|
372 |
+
"model_id": self.model,
|
373 |
+
"voice_settings": {
|
374 |
+
"stability": 0.7,
|
375 |
+
"similarity_boost": 0.8,
|
376 |
+
"style": 0.5,
|
377 |
+
"use_speaker_boost": True
|
378 |
+
}
|
379 |
+
}
|
380 |
+
response = requests.post(url, json=data, headers=headers)
|
381 |
+
|
382 |
+
if response.status_code == 200:
|
383 |
+
return response.content
|
384 |
+
return None
|
385 |
+
except Exception as e:
|
386 |
+
return None
|
387 |
|
388 |
+
def get_voices(self):
|
389 |
+
if not self.api_key:
|
390 |
+
return []
|
391 |
+
|
392 |
+
try:
|
393 |
+
url = "https://api.elevenlabs.io/v1/voices"
|
394 |
+
headers = {"xi-api-key": self.api_key}
|
395 |
+
response = requests.get(url, headers=headers)
|
396 |
+
|
397 |
+
if response.status_code == 200:
|
398 |
+
return response.json().get("voices", [])
|
399 |
+
return []
|
400 |
+
except Exception as e:
|
401 |
+
return []
|