Update agents/agents.py
Browse files- agents/agents.py +159 -172
agents/agents.py
CHANGED
@@ -11,12 +11,12 @@ load_dotenv()
|
|
11 |
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) if os.getenv("OPENAI_API_KEY") else None
|
12 |
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
|
13 |
|
|
|
14 |
class TopicAgent:
|
15 |
def generate_outline(self, topic, duration, difficulty):
|
16 |
if not openai_client:
|
17 |
-
print("OpenAI API not set - using enhanced mock data for outline.")
|
18 |
return self._mock_outline(topic, duration, difficulty)
|
19 |
-
|
20 |
try:
|
21 |
response = openai_client.chat.completions.create(
|
22 |
model="gpt-4-turbo",
|
@@ -45,10 +45,9 @@ class TopicAgent:
|
|
45 |
response_format={"type": "json_object"}
|
46 |
)
|
47 |
return json.loads(response.choices[0].message.content)
|
48 |
-
except Exception
|
49 |
-
print(f"Error generating outline with OpenAI: {e}. Using mock data.")
|
50 |
return self._mock_outline(topic, duration, difficulty)
|
51 |
-
|
52 |
def _mock_outline(self, topic, duration, difficulty):
|
53 |
return {
|
54 |
"title": f"Mastering {topic} for Business Impact",
|
@@ -92,12 +91,12 @@ class TopicAgent:
|
|
92 |
]
|
93 |
}
|
94 |
|
|
|
95 |
class ContentAgent:
|
96 |
def generate_content(self, outline):
|
97 |
if not openai_client:
|
98 |
-
print("OpenAI API not set - using enhanced mock data for content.")
|
99 |
return self._mock_content(outline)
|
100 |
-
|
101 |
try:
|
102 |
response = openai_client.chat.completions.create(
|
103 |
model="gpt-4-turbo",
|
@@ -125,14 +124,13 @@ class ContentAgent:
|
|
125 |
}
|
126 |
],
|
127 |
temperature=0.4,
|
128 |
-
max_tokens=
|
129 |
response_format={"type": "json_object"}
|
130 |
)
|
131 |
return json.loads(response.choices[0].message.content)
|
132 |
-
except Exception
|
133 |
-
print(f"Error generating content with OpenAI: {e}. Using mock data.")
|
134 |
return self._mock_content(outline)
|
135 |
-
|
136 |
def _mock_content(self, outline):
|
137 |
return {
|
138 |
"workshop_title": outline.get("title", "Premium AI Workshop"),
|
@@ -174,12 +172,12 @@ class ContentAgent:
|
|
174 |
]
|
175 |
}
|
176 |
|
|
|
177 |
class SlideAgent:
|
178 |
def generate_slides(self, content):
|
179 |
if not openai_client:
|
180 |
-
print("OpenAI API not set - using enhanced mock data for slides.")
|
181 |
return self._professional_slides(content)
|
182 |
-
|
183 |
try:
|
184 |
response = openai_client.chat.completions.create(
|
185 |
model="gpt-4-turbo",
|
@@ -206,10 +204,9 @@ class SlideAgent:
|
|
206 |
max_tokens=2500
|
207 |
)
|
208 |
return response.choices[0].message.content
|
209 |
-
except Exception
|
210 |
-
print(f"Error generating slides with OpenAI: {e}. Using mock data.")
|
211 |
return self._professional_slides(content)
|
212 |
-
|
213 |
def _professional_slides(self, content):
|
214 |
return f"""---
|
215 |
marp: true
|
@@ -251,170 +248,160 @@ graph TD
|
|
251 |
A[Current Costs] --> B[Potential Savings]
|
252 |
C[Implementation Costs] --> D[Net ROI]
|
253 |
B --> D
|
254 |
-
Use code with caution.
|
255 |
-
Python
|
256 |
Document current process costs
|
|
|
257 |
Estimate efficiency gains
|
|
|
258 |
Calculate net ROI
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
261 |
class CodeAgent:
|
262 |
-
def generate_code(self, content):
|
263 |
-
if not openai_client:
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
Use code with caution.
|
300 |
-
--- Enterprise-Grade Prompt Engineering Lab ---
|
301 |
-
--- Business Solution Framework ---
|
302 |
class PromptOptimizer:
|
303 |
-
|
304 |
-
|
305 |
-
self.
|
306 |
-
|
307 |
-
"
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
return user_input
|
324 |
-
def _validate_business_context(sanitized_input):
|
325 |
-
"""Placeholder for validating input against business rules."""
|
326 |
-
return True
|
327 |
-
def _apply_enterprise_guardrails(sanitized_input):
|
328 |
-
"""Placeholder for applying enterprise-level safety guardrails."""
|
329 |
-
return sanitized_input
|
330 |
def secure_prompt_handling(user_input):
|
331 |
-
|
332 |
-
sanitized =
|
333 |
-
|
334 |
-
return
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
"""Placeholder for the actual AI API call."""
|
339 |
-
return f"AI Response for: {enriched_prompt}"
|
340 |
def integrate_with_salesforce(prompt, salesforce_data):
|
341 |
-
|
342 |
-
enriched_prompt = f"{prompt} using
|
343 |
-
return
|
344 |
"""
|
|
|
|
|
345 |
class DesignAgent:
|
346 |
-
def generate_design(self, slide_content):
|
347 |
-
if not openai_client:
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
Use code with caution.
|
367 |
class VoiceoverAgent:
|
368 |
-
def
|
369 |
-
self.api_key = ELEVENLABS_API_KEY
|
370 |
-
self.voice_id = "21m00Tcm4TlvDq8ikWAM"
|
371 |
-
self.model = "eleven_monolingual_v1"
|
372 |
-
|
373 |
-
def generate_voiceover(self, text, voice_id=None):
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
"xi-api-key": self.api_key
|
386 |
-
}
|
387 |
-
data = {
|
388 |
-
"text": text,
|
389 |
-
"model_id": self.model,
|
390 |
-
"voice_settings": {
|
391 |
-
"stability": 0.7,
|
392 |
-
"similarity_boost": 0.8,
|
393 |
-
"style": 0.5,
|
394 |
-
"use_speaker_boost": True
|
395 |
}
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) if os.getenv("OPENAI_API_KEY") else None
|
12 |
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
|
13 |
|
14 |
+
|
15 |
class TopicAgent:
|
16 |
def generate_outline(self, topic, duration, difficulty):
|
17 |
if not openai_client:
|
|
|
18 |
return self._mock_outline(topic, duration, difficulty)
|
19 |
+
|
20 |
try:
|
21 |
response = openai_client.chat.completions.create(
|
22 |
model="gpt-4-turbo",
|
|
|
45 |
response_format={"type": "json_object"}
|
46 |
)
|
47 |
return json.loads(response.choices[0].message.content)
|
48 |
+
except Exception:
|
|
|
49 |
return self._mock_outline(topic, duration, difficulty)
|
50 |
+
|
51 |
def _mock_outline(self, topic, duration, difficulty):
|
52 |
return {
|
53 |
"title": f"Mastering {topic} for Business Impact",
|
|
|
91 |
]
|
92 |
}
|
93 |
|
94 |
+
|
95 |
class ContentAgent:
|
96 |
def generate_content(self, outline):
|
97 |
if not openai_client:
|
|
|
98 |
return self._mock_content(outline)
|
99 |
+
|
100 |
try:
|
101 |
response = openai_client.chat.completions.create(
|
102 |
model="gpt-4-turbo",
|
|
|
124 |
}
|
125 |
],
|
126 |
temperature=0.4,
|
127 |
+
max_tokens=3000,
|
128 |
response_format={"type": "json_object"}
|
129 |
)
|
130 |
return json.loads(response.choices[0].message.content)
|
131 |
+
except Exception:
|
|
|
132 |
return self._mock_content(outline)
|
133 |
+
|
134 |
def _mock_content(self, outline):
|
135 |
return {
|
136 |
"workshop_title": outline.get("title", "Premium AI Workshop"),
|
|
|
172 |
]
|
173 |
}
|
174 |
|
175 |
+
|
176 |
class SlideAgent:
|
177 |
def generate_slides(self, content):
|
178 |
if not openai_client:
|
|
|
179 |
return self._professional_slides(content)
|
180 |
+
|
181 |
try:
|
182 |
response = openai_client.chat.completions.create(
|
183 |
model="gpt-4-turbo",
|
|
|
204 |
max_tokens=2500
|
205 |
)
|
206 |
return response.choices[0].message.content
|
207 |
+
except Exception:
|
|
|
208 |
return self._professional_slides(content)
|
209 |
+
|
210 |
def _professional_slides(self, content):
|
211 |
return f"""---
|
212 |
marp: true
|
|
|
248 |
A[Current Costs] --> B[Potential Savings]
|
249 |
C[Implementation Costs] --> D[Net ROI]
|
250 |
B --> D
|
|
|
|
|
251 |
Document current process costs
|
252 |
+
|
253 |
Estimate efficiency gains
|
254 |
+
|
255 |
Calculate net ROI
|
256 |
+
|
257 |
+
Q&A
|
258 |
+
Let's discuss your specific challenges
|
259 |
+
```"""
|
260 |
+
|
261 |
+
|
262 |
class CodeAgent:
|
263 |
+
def generate_code(self, content):
|
264 |
+
if not openai_client:
|
265 |
+
return self._professional_code(content)
|
266 |
+
|
267 |
+
try:
|
268 |
+
response = openai_client.chat.completions.create(
|
269 |
+
model="gpt-4-turbo",
|
270 |
+
messages=[
|
271 |
+
{
|
272 |
+
"role": "system",
|
273 |
+
"content": (
|
274 |
+
"You are an enterprise solutions architect. Create professional-grade code labs with: "
|
275 |
+
"1) Production-ready patterns 2) Comprehensive documentation "
|
276 |
+
"3) Enterprise security practices 4) Scalable architectures. "
|
277 |
+
"Use Python with the latest best practices."
|
278 |
+
)
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"role": "user",
|
282 |
+
"content": (
|
283 |
+
f"Create a professional code lab for: {json.dumps(content)}. "
|
284 |
+
"Include: Setup instructions, business solution patterns, "
|
285 |
+
"enterprise integration examples, and security best practices."
|
286 |
+
)
|
287 |
+
}
|
288 |
+
],
|
289 |
+
temperature=0.3,
|
290 |
+
max_tokens=2500
|
291 |
+
)
|
292 |
+
return response.choices[0].message.content
|
293 |
+
except Exception:
|
294 |
+
return self._professional_code(content)
|
295 |
+
|
296 |
+
def _professional_code(self, content):
|
297 |
+
return f"""# Enterprise-Grade Prompt Engineering Lab
|
298 |
+
Business Solution Framework
|
299 |
+
python
|
|
|
|
|
|
|
300 |
class PromptOptimizer:
|
301 |
+
def __init__(self, model="gpt-4-turbo"):
|
302 |
+
self.model = model
|
303 |
+
self.pattern_library = {{
|
304 |
+
"financial_analysis": "Extract key metrics from financial reports",
|
305 |
+
"customer_service": "Resolve tier-2 support tickets"
|
306 |
+
}}
|
307 |
+
|
308 |
+
def optimize_prompt(self, business_case):
|
309 |
+
# Implement enterprise optimization logic
|
310 |
+
return f"Business-optimized prompt for {{business_case}}"
|
311 |
+
|
312 |
+
def calculate_roi(self, current_cost, expected_efficiency):
|
313 |
+
return current_cost * expected_efficiency
|
314 |
+
|
315 |
+
# Example usage
|
316 |
+
optimizer = PromptOptimizer()
|
317 |
+
print(optimizer.calculate_roi(500000, 0.35)) # $175,000 savings
|
318 |
+
|
319 |
+
Security Best Practices
|
320 |
+
python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
def secure_prompt_handling(user_input):
|
322 |
+
# Implement OWASP security standards
|
323 |
+
sanitized = sanitize_input(user_input)
|
324 |
+
validate_business_context(sanitized)
|
325 |
+
return apply_enterprise_guardrails(sanitized)
|
326 |
+
|
327 |
+
Integration Pattern: CRM System
|
328 |
+
python
|
|
|
|
|
329 |
def integrate_with_salesforce(prompt, salesforce_data):
|
330 |
+
# Enterprise integration example
|
331 |
+
enriched_prompt = f"{{prompt}} using {{salesforce_data}}"
|
332 |
+
return call_ai_api(enriched_prompt)
|
333 |
"""
|
334 |
+
|
335 |
+
|
336 |
class DesignAgent:
|
337 |
+
def generate_design(self, slide_content):
|
338 |
+
if not openai_client:
|
339 |
+
return None
|
340 |
+
|
341 |
+
try:
|
342 |
+
response = openai_client.images.generate(
|
343 |
+
model="dall-e-3",
|
344 |
+
prompt=(
|
345 |
+
f"Professional corporate slide background for '{slide_content[:200]}' workshop. "
|
346 |
+
"Modern business style, clean lines, premium gradient, boardroom appropriate. "
|
347 |
+
"Include abstract technology elements in corporate colors."
|
348 |
+
),
|
349 |
+
n=1,
|
350 |
+
size="1024x1024"
|
351 |
+
)
|
352 |
+
return response.data[0].url
|
353 |
+
except Exception:
|
354 |
+
return None
|
355 |
+
|
356 |
+
|
|
|
357 |
class VoiceoverAgent:
|
358 |
+
def __init__(self):
|
359 |
+
self.api_key = ELEVENLABS_API_KEY
|
360 |
+
self.voice_id = "21m00Tcm4TlvDq8ikWAM" # Default voice ID
|
361 |
+
self.model = "eleven_monolingual_v1"
|
362 |
+
|
363 |
+
def generate_voiceover(self, text, voice_id=None):
|
364 |
+
if not self.api_key:
|
365 |
+
return None
|
366 |
+
|
367 |
+
try:
|
368 |
+
voice = voice_id if voice_id else self.voice_id
|
369 |
+
|
370 |
+
url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice}"
|
371 |
+
headers = {
|
372 |
+
"Accept": "audio/mpeg",
|
373 |
+
"Content-Type": "application/json",
|
374 |
+
"xi-api-key": self.api_key
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
}
|
376 |
+
data = {
|
377 |
+
"text": text,
|
378 |
+
"model_id": self.model,
|
379 |
+
"voice_settings": {
|
380 |
+
"stability": 0.7,
|
381 |
+
"similarity_boost": 0.8,
|
382 |
+
"style": 0.5,
|
383 |
+
"use_speaker_boost": True
|
384 |
+
}
|
385 |
+
}
|
386 |
+
response = requests.post(url, json=data, headers=headers)
|
387 |
+
|
388 |
+
if response.status_code == 200:
|
389 |
+
return response.content
|
390 |
+
return None
|
391 |
+
except Exception:
|
392 |
+
return None
|
393 |
+
|
394 |
+
def get_voices(self):
|
395 |
+
if not self.api_key:
|
396 |
+
return []
|
397 |
+
|
398 |
+
try:
|
399 |
+
url = "https://api.elevenlabs.io/v1/voices"
|
400 |
+
headers = {"xi-api-key": self.api_key}
|
401 |
+
response = requests.get(url, headers=headers)
|
402 |
+
|
403 |
+
if response.status_code == 200:
|
404 |
+
return response.json().get("voices", [])
|
405 |
+
return []
|
406 |
+
except Exception:
|
407 |
+
return []
|