Spaces:
Sleeping
Sleeping
Update modules/orchestrator.py
Browse files- modules/orchestrator.py +30 -64
modules/orchestrator.py
CHANGED
@@ -4,7 +4,7 @@ The Central Nervous System of Project Asclepius.
|
|
4 |
This module is the master conductor, orchestrating high-performance, asynchronous
|
5 |
workflows for each of the application's features. It intelligently sequences
|
6 |
calls to API clients and the Gemini handler to transform user queries into
|
7 |
-
comprehensive, synthesized reports.
|
8 |
"""
|
9 |
|
10 |
import asyncio
|
@@ -14,55 +14,31 @@ from PIL import Image
|
|
14 |
|
15 |
# Import all our specialized tools
|
16 |
from . import gemini_handler, prompts, utils
|
17 |
-
|
18 |
-
# ==============================================================================
|
19 |
-
# CORRECTED LINES: The import path is now an absolute import from the project root.
|
20 |
-
# The leading dot '.' has been removed.
|
21 |
from api_clients import (
|
22 |
pubmed_client,
|
23 |
clinicaltrials_client,
|
24 |
openfda_client,
|
25 |
rxnorm_client
|
26 |
)
|
27 |
-
# ==============================================================================
|
28 |
-
|
29 |
|
30 |
# --- Internal Helper for Data Formatting ---
|
31 |
-
|
32 |
def _format_api_data_for_prompt(api_results: dict) -> dict[str, str]:
|
33 |
-
"""
|
34 |
-
Takes the raw dictionary of API results and formats each entry into a
|
35 |
-
clean, readable string suitable for injection into a Gemini prompt.
|
36 |
-
|
37 |
-
Args:
|
38 |
-
api_results (dict): The dictionary of results from asyncio.gather.
|
39 |
-
|
40 |
-
Returns:
|
41 |
-
dict[str, str]: A dictionary with the same keys but formatted string values.
|
42 |
-
"""
|
43 |
formatted_strings = {}
|
44 |
-
|
45 |
-
# Format PubMed data
|
46 |
pubmed_data = api_results.get('pubmed', [])
|
47 |
if isinstance(pubmed_data, list) and pubmed_data:
|
48 |
lines = [f"- Title: {a.get('title', 'N/A')} (Journal: {a.get('journal', 'N/A')}, URL: {a.get('url')})" for a in pubmed_data]
|
49 |
formatted_strings['pubmed'] = "\n".join(lines)
|
50 |
else:
|
51 |
formatted_strings['pubmed'] = "No relevant review articles were found on PubMed for this query."
|
52 |
-
|
53 |
-
# Format Clinical Trials data
|
54 |
trials_data = api_results.get('trials', [])
|
55 |
if isinstance(trials_data, list) and trials_data:
|
56 |
lines = [f"- Title: {t.get('title', 'N/A')} (Status: {t.get('status', 'N/A')}, URL: {t.get('url')})" for t in trials_data]
|
57 |
formatted_strings['trials'] = "\n".join(lines)
|
58 |
else:
|
59 |
formatted_strings['trials'] = "No actively recruiting clinical trials were found matching this query."
|
60 |
-
|
61 |
-
# Format OpenFDA Adverse Events data
|
62 |
-
# This data often comes from multiple queries, so we flatten it.
|
63 |
fda_data = api_results.get('openfda', [])
|
64 |
if isinstance(fda_data, list):
|
65 |
-
# The result is a list of lists, so we flatten it
|
66 |
all_events = list(chain.from_iterable(filter(None, fda_data)))
|
67 |
if all_events:
|
68 |
lines = [f"- {evt['term']} (Reported {evt['count']} times)" for evt in all_events]
|
@@ -71,8 +47,6 @@ def _format_api_data_for_prompt(api_results: dict) -> dict[str, str]:
|
|
71 |
formatted_strings['openfda'] = "No specific adverse event data was found for this query."
|
72 |
else:
|
73 |
formatted_strings['openfda'] = "No specific adverse event data was found for this query."
|
74 |
-
|
75 |
-
# Format Vision analysis
|
76 |
vision_data = api_results.get('vision', "")
|
77 |
if isinstance(vision_data, str) and vision_data:
|
78 |
formatted_strings['vision'] = vision_data
|
@@ -80,81 +54,85 @@ def _format_api_data_for_prompt(api_results: dict) -> dict[str, str]:
|
|
80 |
formatted_strings['vision'] = f"An error occurred during image analysis: {vision_data}"
|
81 |
else:
|
82 |
formatted_strings['vision'] = ""
|
83 |
-
|
84 |
return formatted_strings
|
85 |
|
86 |
|
87 |
-
# --- FEATURE 1: Symptom Synthesizer Pipeline ---
|
88 |
|
89 |
async def run_symptom_synthesis(user_query: str, image_input: Image.Image | None) -> str:
|
90 |
"""The complete, asynchronous pipeline for the Symptom Synthesizer tab."""
|
91 |
if not user_query:
|
92 |
return "Please enter a symptom description or a medical question to begin."
|
93 |
|
94 |
-
#
|
95 |
-
#
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
concepts_str = await gemini_handler.generate_text_response(term_prompt)
|
98 |
concepts = utils.safe_literal_eval(concepts_str)
|
99 |
if not isinstance(concepts, list) or not concepts:
|
100 |
-
concepts = [
|
101 |
|
102 |
# Use "OR" for a broader, more inclusive search across APIs
|
103 |
search_query = " OR ".join(f'"{c}"' for c in concepts)
|
104 |
|
105 |
-
#
|
106 |
-
#
|
|
|
107 |
async with aiohttp.ClientSession() as session:
|
108 |
-
# Define the portfolio of data we need to collect
|
109 |
tasks = {
|
110 |
"pubmed": pubmed_client.search_pubmed(session, search_query, max_results=3),
|
111 |
"trials": clinicaltrials_client.find_trials(session, search_query, max_results=3),
|
112 |
"openfda": asyncio.gather(*(openfda_client.get_adverse_events(session, c, top_n=3) for c in concepts)),
|
113 |
}
|
114 |
-
# If an image is provided, add the vision analysis to our task portfolio
|
115 |
if image_input:
|
116 |
tasks["vision"] = gemini_handler.analyze_image_with_text(
|
117 |
"In the context of the user query, analyze this image objectively. Describe visual features like color, shape, texture, and patterns. Do not diagnose or offer medical advice.", image_input
|
118 |
)
|
119 |
-
|
120 |
-
# Execute all tasks and wait for them all to complete
|
121 |
raw_results = await asyncio.gather(*tasks.values(), return_exceptions=True)
|
122 |
api_data = dict(zip(tasks.keys(), raw_results))
|
123 |
|
124 |
-
#
|
125 |
-
#
|
|
|
126 |
formatted_data = _format_api_data_for_prompt(api_data)
|
127 |
|
128 |
-
#
|
129 |
-
#
|
|
|
130 |
synthesis_prompt = prompts.get_synthesis_prompt(
|
131 |
-
user_query=user_query,
|
132 |
concepts=concepts,
|
133 |
pubmed_data=formatted_data['pubmed'],
|
134 |
trials_data=formatted_data['trials'],
|
135 |
fda_data=formatted_data['openfda'],
|
136 |
vision_analysis=formatted_data['vision']
|
137 |
)
|
138 |
-
|
139 |
final_report = await gemini_handler.generate_text_response(synthesis_prompt)
|
140 |
|
141 |
-
#
|
142 |
-
#
|
|
|
143 |
return f"{prompts.DISCLAIMER}\n\n{final_report}"
|
144 |
|
145 |
|
146 |
# --- FEATURE 2: Drug Interaction & Safety Analyzer Pipeline ---
|
147 |
-
|
148 |
async def run_drug_interaction_analysis(drug_list_str: str) -> str:
|
149 |
"""The complete, asynchronous pipeline for the Drug Interaction Analyzer tab."""
|
150 |
if not drug_list_str:
|
151 |
return "Please enter a comma-separated list of medications."
|
152 |
-
|
153 |
drug_names = [name.strip() for name in drug_list_str.split(',') if name.strip()]
|
154 |
if len(drug_names) < 2:
|
155 |
return "Please enter at least two medications to check for interactions."
|
156 |
-
|
157 |
-
# STEP 1: Concurrent Drug Data Gathering
|
158 |
async with aiohttp.ClientSession() as session:
|
159 |
tasks = {
|
160 |
"interactions": rxnorm_client.run_interaction_check(drug_names),
|
@@ -162,31 +140,19 @@ async def run_drug_interaction_analysis(drug_list_str: str) -> str:
|
|
162 |
}
|
163 |
raw_results = await asyncio.gather(*tasks.values(), return_exceptions=True)
|
164 |
api_data = dict(zip(tasks.keys(), raw_results))
|
165 |
-
|
166 |
-
# STEP 2: Data Formatting for AI Synthesis
|
167 |
interaction_data = api_data.get('interactions', [])
|
168 |
if isinstance(interaction_data, Exception):
|
169 |
interaction_data = [{"error": str(interaction_data)}]
|
170 |
-
|
171 |
safety_profiles = api_data.get('safety_profiles', [])
|
172 |
if isinstance(safety_profiles, Exception):
|
173 |
safety_profiles = [{"error": str(safety_profiles)}]
|
174 |
-
|
175 |
-
# Combine safety profiles with their drug names for clarity in the prompt
|
176 |
safety_data_dict = dict(zip(drug_names, safety_profiles))
|
177 |
-
|
178 |
-
# Format the complex data into clean strings
|
179 |
interaction_formatted = utils.format_list_as_markdown([str(i) for i in interaction_data]) if interaction_data else "No interactions found."
|
180 |
safety_formatted = "\n".join([f"Profile for {drug}: {profile}" for drug, profile in safety_data_dict.items()])
|
181 |
-
|
182 |
-
# STEP 3: AI-Powered Safety Briefing
|
183 |
synthesis_prompt = prompts.get_drug_interaction_synthesis_prompt(
|
184 |
drug_names=drug_names,
|
185 |
interaction_data=interaction_formatted,
|
186 |
safety_data=safety_formatted
|
187 |
)
|
188 |
-
|
189 |
final_report = await gemini_handler.generate_text_response(synthesis_prompt)
|
190 |
-
|
191 |
-
# STEP 4: Final Delivery
|
192 |
return f"{prompts.DISCLAIMER}\n\n{final_report}"
|
|
|
4 |
This module is the master conductor, orchestrating high-performance, asynchronous
|
5 |
workflows for each of the application's features. It intelligently sequences
|
6 |
calls to API clients and the Gemini handler to transform user queries into
|
7 |
+
comprehensive, synthesized reports. (v1.1)
|
8 |
"""
|
9 |
|
10 |
import asyncio
|
|
|
14 |
|
15 |
# Import all our specialized tools
|
16 |
from . import gemini_handler, prompts, utils
|
|
|
|
|
|
|
|
|
17 |
from api_clients import (
|
18 |
pubmed_client,
|
19 |
clinicaltrials_client,
|
20 |
openfda_client,
|
21 |
rxnorm_client
|
22 |
)
|
|
|
|
|
23 |
|
24 |
# --- Internal Helper for Data Formatting ---
|
25 |
+
# (This helper function remains unchanged)
|
26 |
def _format_api_data_for_prompt(api_results: dict) -> dict[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
formatted_strings = {}
|
|
|
|
|
28 |
pubmed_data = api_results.get('pubmed', [])
|
29 |
if isinstance(pubmed_data, list) and pubmed_data:
|
30 |
lines = [f"- Title: {a.get('title', 'N/A')} (Journal: {a.get('journal', 'N/A')}, URL: {a.get('url')})" for a in pubmed_data]
|
31 |
formatted_strings['pubmed'] = "\n".join(lines)
|
32 |
else:
|
33 |
formatted_strings['pubmed'] = "No relevant review articles were found on PubMed for this query."
|
|
|
|
|
34 |
trials_data = api_results.get('trials', [])
|
35 |
if isinstance(trials_data, list) and trials_data:
|
36 |
lines = [f"- Title: {t.get('title', 'N/A')} (Status: {t.get('status', 'N/A')}, URL: {t.get('url')})" for t in trials_data]
|
37 |
formatted_strings['trials'] = "\n".join(lines)
|
38 |
else:
|
39 |
formatted_strings['trials'] = "No actively recruiting clinical trials were found matching this query."
|
|
|
|
|
|
|
40 |
fda_data = api_results.get('openfda', [])
|
41 |
if isinstance(fda_data, list):
|
|
|
42 |
all_events = list(chain.from_iterable(filter(None, fda_data)))
|
43 |
if all_events:
|
44 |
lines = [f"- {evt['term']} (Reported {evt['count']} times)" for evt in all_events]
|
|
|
47 |
formatted_strings['openfda'] = "No specific adverse event data was found for this query."
|
48 |
else:
|
49 |
formatted_strings['openfda'] = "No specific adverse event data was found for this query."
|
|
|
|
|
50 |
vision_data = api_results.get('vision', "")
|
51 |
if isinstance(vision_data, str) and vision_data:
|
52 |
formatted_strings['vision'] = vision_data
|
|
|
54 |
formatted_strings['vision'] = f"An error occurred during image analysis: {vision_data}"
|
55 |
else:
|
56 |
formatted_strings['vision'] = ""
|
|
|
57 |
return formatted_strings
|
58 |
|
59 |
|
60 |
+
# --- FEATURE 1: Symptom Synthesizer Pipeline (v1.1) ---
|
61 |
|
62 |
async def run_symptom_synthesis(user_query: str, image_input: Image.Image | None) -> str:
|
63 |
"""The complete, asynchronous pipeline for the Symptom Synthesizer tab."""
|
64 |
if not user_query:
|
65 |
return "Please enter a symptom description or a medical question to begin."
|
66 |
|
67 |
+
# ==============================================================================
|
68 |
+
# STEP 1 (V1.1 UPGRADE): AI-Powered Query Correction (The "Medical Translator")
|
69 |
+
# ==============================================================================
|
70 |
+
correction_prompt = prompts.get_query_correction_prompt(user_query)
|
71 |
+
corrected_query = await gemini_handler.generate_text_response(correction_prompt)
|
72 |
+
if not corrected_query:
|
73 |
+
corrected_query = user_query # Fallback to original query if correction fails
|
74 |
+
|
75 |
+
# ==============================================================================
|
76 |
+
# STEP 2: AI-Powered Concept Extraction (now on the CLEANED query)
|
77 |
+
# ==============================================================================
|
78 |
+
term_prompt = prompts.get_term_extraction_prompt(corrected_query)
|
79 |
concepts_str = await gemini_handler.generate_text_response(term_prompt)
|
80 |
concepts = utils.safe_literal_eval(concepts_str)
|
81 |
if not isinstance(concepts, list) or not concepts:
|
82 |
+
concepts = [corrected_query] # Fallback if parsing fails
|
83 |
|
84 |
# Use "OR" for a broader, more inclusive search across APIs
|
85 |
search_query = " OR ".join(f'"{c}"' for c in concepts)
|
86 |
|
87 |
+
# ==============================================================================
|
88 |
+
# STEP 3: Massively Parallel Evidence Gathering
|
89 |
+
# ==============================================================================
|
90 |
async with aiohttp.ClientSession() as session:
|
|
|
91 |
tasks = {
|
92 |
"pubmed": pubmed_client.search_pubmed(session, search_query, max_results=3),
|
93 |
"trials": clinicaltrials_client.find_trials(session, search_query, max_results=3),
|
94 |
"openfda": asyncio.gather(*(openfda_client.get_adverse_events(session, c, top_n=3) for c in concepts)),
|
95 |
}
|
|
|
96 |
if image_input:
|
97 |
tasks["vision"] = gemini_handler.analyze_image_with_text(
|
98 |
"In the context of the user query, analyze this image objectively. Describe visual features like color, shape, texture, and patterns. Do not diagnose or offer medical advice.", image_input
|
99 |
)
|
|
|
|
|
100 |
raw_results = await asyncio.gather(*tasks.values(), return_exceptions=True)
|
101 |
api_data = dict(zip(tasks.keys(), raw_results))
|
102 |
|
103 |
+
# ==============================================================================
|
104 |
+
# STEP 4: Data Formatting
|
105 |
+
# ==============================================================================
|
106 |
formatted_data = _format_api_data_for_prompt(api_data)
|
107 |
|
108 |
+
# ==============================================================================
|
109 |
+
# STEP 5: The Grand Synthesis
|
110 |
+
# ==============================================================================
|
111 |
synthesis_prompt = prompts.get_synthesis_prompt(
|
112 |
+
user_query=user_query, # Pass original query for context
|
113 |
concepts=concepts,
|
114 |
pubmed_data=formatted_data['pubmed'],
|
115 |
trials_data=formatted_data['trials'],
|
116 |
fda_data=formatted_data['openfda'],
|
117 |
vision_analysis=formatted_data['vision']
|
118 |
)
|
|
|
119 |
final_report = await gemini_handler.generate_text_response(synthesis_prompt)
|
120 |
|
121 |
+
# ==============================================================================
|
122 |
+
# STEP 6: Final Delivery
|
123 |
+
# ==============================================================================
|
124 |
return f"{prompts.DISCLAIMER}\n\n{final_report}"
|
125 |
|
126 |
|
127 |
# --- FEATURE 2: Drug Interaction & Safety Analyzer Pipeline ---
|
128 |
+
# (This function remains unchanged)
|
129 |
async def run_drug_interaction_analysis(drug_list_str: str) -> str:
|
130 |
"""The complete, asynchronous pipeline for the Drug Interaction Analyzer tab."""
|
131 |
if not drug_list_str:
|
132 |
return "Please enter a comma-separated list of medications."
|
|
|
133 |
drug_names = [name.strip() for name in drug_list_str.split(',') if name.strip()]
|
134 |
if len(drug_names) < 2:
|
135 |
return "Please enter at least two medications to check for interactions."
|
|
|
|
|
136 |
async with aiohttp.ClientSession() as session:
|
137 |
tasks = {
|
138 |
"interactions": rxnorm_client.run_interaction_check(drug_names),
|
|
|
140 |
}
|
141 |
raw_results = await asyncio.gather(*tasks.values(), return_exceptions=True)
|
142 |
api_data = dict(zip(tasks.keys(), raw_results))
|
|
|
|
|
143 |
interaction_data = api_data.get('interactions', [])
|
144 |
if isinstance(interaction_data, Exception):
|
145 |
interaction_data = [{"error": str(interaction_data)}]
|
|
|
146 |
safety_profiles = api_data.get('safety_profiles', [])
|
147 |
if isinstance(safety_profiles, Exception):
|
148 |
safety_profiles = [{"error": str(safety_profiles)}]
|
|
|
|
|
149 |
safety_data_dict = dict(zip(drug_names, safety_profiles))
|
|
|
|
|
150 |
interaction_formatted = utils.format_list_as_markdown([str(i) for i in interaction_data]) if interaction_data else "No interactions found."
|
151 |
safety_formatted = "\n".join([f"Profile for {drug}: {profile}" for drug, profile in safety_data_dict.items()])
|
|
|
|
|
152 |
synthesis_prompt = prompts.get_drug_interaction_synthesis_prompt(
|
153 |
drug_names=drug_names,
|
154 |
interaction_data=interaction_formatted,
|
155 |
safety_data=safety_formatted
|
156 |
)
|
|
|
157 |
final_report = await gemini_handler.generate_text_response(synthesis_prompt)
|
|
|
|
|
158 |
return f"{prompts.DISCLAIMER}\n\n{final_report}"
|