Spaces:
Running
Running
Update modules/orchestrator.py
Browse files- modules/orchestrator.py +49 -56
modules/orchestrator.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
# modules/orchestrator.py
|
2 |
"""
|
3 |
The Central Nervous System of Project Asclepius.
|
4 |
-
|
5 |
-
|
6 |
-
calls to API clients and the Gemini handler to transform user queries into
|
7 |
-
comprehensive, synthesized reports. (v1.3 - Final Polish)
|
8 |
"""
|
9 |
|
10 |
import asyncio
|
@@ -12,91 +10,85 @@ import aiohttp
|
|
12 |
from itertools import chain
|
13 |
from PIL import Image
|
14 |
|
15 |
-
# Import all our specialized tools
|
16 |
from . import gemini_handler, prompts, utils
|
17 |
from api_clients import (
|
18 |
-
pubmed_client,
|
19 |
-
clinicaltrials_client,
|
20 |
-
openfda_client,
|
21 |
-
rxnorm_client
|
22 |
)
|
23 |
|
24 |
-
# --- Internal Helper for Data Formatting ---
|
25 |
-
# (This helper function remains unchanged)
|
26 |
def _format_api_data_for_prompt(api_results: dict) -> dict[str, str]:
|
|
|
27 |
formatted_strings = {}
|
28 |
pubmed_data = api_results.get('pubmed', [])
|
29 |
-
if isinstance(pubmed_data, list) and pubmed_data:
|
30 |
-
|
31 |
-
formatted_strings['pubmed'] = "\n".join(lines)
|
32 |
-
else:
|
33 |
-
formatted_strings['pubmed'] = "No relevant review articles were found on PubMed for this query."
|
34 |
trials_data = api_results.get('trials', [])
|
35 |
-
if isinstance(trials_data, list) and trials_data:
|
36 |
-
|
37 |
-
formatted_strings['trials'] = "\n".join(lines)
|
38 |
-
else:
|
39 |
-
formatted_strings['trials'] = "No actively recruiting clinical trials were found matching this query."
|
40 |
fda_data = api_results.get('openfda', [])
|
41 |
if isinstance(fda_data, list):
|
42 |
all_events = list(chain.from_iterable(filter(None, fda_data)))
|
43 |
-
if all_events:
|
44 |
-
|
45 |
-
|
46 |
-
else:
|
47 |
-
formatted_strings['openfda'] = "No specific adverse event data was found for this query."
|
48 |
-
else:
|
49 |
-
formatted_strings['openfda'] = "No specific adverse event data was found for this query."
|
50 |
vision_data = api_results.get('vision', "")
|
51 |
-
if isinstance(vision_data, str) and vision_data:
|
52 |
-
|
53 |
-
|
54 |
-
formatted_strings['vision'] = f"An error occurred during image analysis: {vision_data}"
|
55 |
-
else:
|
56 |
-
formatted_strings['vision'] = ""
|
57 |
return formatted_strings
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
|
|
61 |
async def run_symptom_synthesis(user_query: str, image_input: Image.Image | None) -> str:
|
62 |
-
|
63 |
-
|
64 |
-
if not user_query:
|
65 |
-
return "Please enter a symptom description or a medical question to begin."
|
66 |
correction_prompt = prompts.get_query_correction_prompt(user_query)
|
67 |
corrected_query = await gemini_handler.generate_text_response(correction_prompt)
|
68 |
-
if not corrected_query:
|
69 |
-
corrected_query = user_query
|
70 |
term_prompt = prompts.get_term_extraction_prompt(corrected_query)
|
71 |
concepts_str = await gemini_handler.generate_text_response(term_prompt)
|
72 |
concepts = utils.safe_literal_eval(concepts_str)
|
73 |
-
if not isinstance(concepts, list) or not concepts:
|
74 |
-
concepts = [corrected_query]
|
75 |
search_query = " OR ".join(f'"{c}"' for c in concepts)
|
76 |
async with aiohttp.ClientSession() as session:
|
77 |
tasks = { "pubmed": pubmed_client.search_pubmed(session, search_query, max_results=3), "trials": clinicaltrials_client.find_trials(session, search_query, max_results=3), "openfda": asyncio.gather(*(openfda_client.get_adverse_events(session, c, top_n=3) for c in concepts)), }
|
78 |
-
if image_input:
|
79 |
-
tasks["vision"] = gemini_handler.analyze_image_with_text("In the context of the user query, analyze this image objectively. Describe visual features. Do not diagnose.", image_input)
|
80 |
raw_results = await asyncio.gather(*tasks.values(), return_exceptions=True)
|
81 |
api_data = dict(zip(tasks.keys(), raw_results))
|
82 |
formatted_data = _format_api_data_for_prompt(api_data)
|
|
|
|
|
83 |
synthesis_prompt = prompts.get_synthesis_prompt(user_query=user_query, concepts=concepts, pubmed_data=formatted_data['pubmed'], trials_data=formatted_data['trials'], fda_data=formatted_data['openfda'], vision_analysis=formatted_data['vision'])
|
84 |
final_report = await gemini_handler.generate_text_response(synthesis_prompt)
|
85 |
|
86 |
-
#
|
87 |
-
|
88 |
-
# We will manually remove the AI's redundant disclaimer to ensure a clean output.
|
89 |
-
# ==============================================================================
|
90 |
-
ghost_disclaimer = "⚠️ IMPORTANT DISCLAIMER: This report is for informational purposes only and should not be considered medical advice. Always consult with a qualified healthcare professional for diagnosis and treatment of any medical condition."
|
91 |
-
cleaned_report = final_report.replace(ghost_disclaimer, "").strip()
|
92 |
|
93 |
# STEP 7: Final Delivery
|
94 |
return f"{prompts.DISCLAIMER}\n\n{cleaned_report}"
|
95 |
|
96 |
|
97 |
-
# --- FEATURE 2: Drug Interaction & Safety Analyzer Pipeline (
|
98 |
async def run_drug_interaction_analysis(drug_list_str: str) -> str:
|
99 |
-
"""The complete, asynchronous pipeline for the Drug Interaction Analyzer tab."""
|
100 |
# (Steps remain the same)
|
101 |
if not drug_list_str: return "Please enter a comma-separated list of medications."
|
102 |
drug_names = [name.strip() for name in drug_list_str.split(',') if name.strip()]
|
@@ -112,11 +104,12 @@ async def run_drug_interaction_analysis(drug_list_str: str) -> str:
|
|
112 |
safety_data_dict = dict(zip(drug_names, safety_profiles))
|
113 |
interaction_formatted = utils.format_list_as_markdown([str(i) for i in interaction_data]) if interaction_data else "No interactions found."
|
114 |
safety_formatted = "\n".join([f"Profile for {drug}: {profile}" for drug, profile in safety_data_dict.items()])
|
|
|
|
|
115 |
synthesis_prompt = prompts.get_drug_interaction_synthesis_prompt(drug_names=drug_names, interaction_data=interaction_formatted, safety_data=safety_formatted)
|
116 |
final_report = await gemini_handler.generate_text_response(synthesis_prompt)
|
117 |
|
118 |
-
#
|
119 |
-
|
120 |
-
cleaned_report = final_report.replace(ghost_disclaimer_drug, "").strip()
|
121 |
|
122 |
return f"{prompts.DISCLAIMER}\n\n{cleaned_report}"
|
|
|
1 |
# modules/orchestrator.py
|
2 |
"""
|
3 |
The Central Nervous System of Project Asclepius.
|
4 |
+
(v2.0 - The "Clinical Insight Engine" Upgrade)
|
5 |
+
This version uses a smarter post-processing function to guarantee clean output.
|
|
|
|
|
6 |
"""
|
7 |
|
8 |
import asyncio
|
|
|
10 |
from itertools import chain
|
11 |
from PIL import Image
|
12 |
|
|
|
13 |
from . import gemini_handler, prompts, utils
|
14 |
from api_clients import (
|
15 |
+
pubmed_client, clinicaltrials_client, openfda_client, rxnorm_client
|
|
|
|
|
|
|
16 |
)
|
17 |
|
18 |
+
# --- Internal Helper for Data Formatting (Unchanged) ---
|
|
|
19 |
def _format_api_data_for_prompt(api_results: dict) -> dict[str, str]:
|
20 |
+
# This function is unchanged.
|
21 |
formatted_strings = {}
|
22 |
pubmed_data = api_results.get('pubmed', [])
|
23 |
+
if isinstance(pubmed_data, list) and pubmed_data: lines = [f"- Title: {a.get('title', 'N/A')} (Journal: {a.get('journal', 'N/A')}, URL: {a.get('url')})" for a in pubmed_data]; formatted_strings['pubmed'] = "\n".join(lines)
|
24 |
+
else: formatted_strings['pubmed'] = "No relevant review articles were found on PubMed for this query."
|
|
|
|
|
|
|
25 |
trials_data = api_results.get('trials', [])
|
26 |
+
if isinstance(trials_data, list) and trials_data: lines = [f"- Title: {t.get('title', 'N/A')} (Status: {t.get('status', 'N/A')}, URL: {t.get('url')})" for t in trials_data]; formatted_strings['trials'] = "\n".join(lines)
|
27 |
+
else: formatted_strings['trials'] = "No actively recruiting clinical trials were found matching this query."
|
|
|
|
|
|
|
28 |
fda_data = api_results.get('openfda', [])
|
29 |
if isinstance(fda_data, list):
|
30 |
all_events = list(chain.from_iterable(filter(None, fda_data)))
|
31 |
+
if all_events: lines = [f"- {evt['term']} (Reported {evt['count']} times)" for evt in all_events]; formatted_strings['openfda'] = "\n".join(lines)
|
32 |
+
else: formatted_strings['openfda'] = "No specific adverse event data was found for this query."
|
33 |
+
else: formatted_strings['openfda'] = "No specific adverse event data was found for this query."
|
|
|
|
|
|
|
|
|
34 |
vision_data = api_results.get('vision', "")
|
35 |
+
if isinstance(vision_data, str) and vision_data: formatted_strings['vision'] = vision_data
|
36 |
+
elif isinstance(vision_data, Exception): formatted_strings['vision'] = f"An error occurred during image analysis: {vision_data}"
|
37 |
+
else: formatted_strings['vision'] = ""
|
|
|
|
|
|
|
38 |
return formatted_strings
|
39 |
|
40 |
+
# ==============================================================================
|
41 |
+
# V2.0 UPGRADE: A robust function to remove any AI-generated preamble/disclaimer.
|
42 |
+
# ==============================================================================
|
43 |
+
def _clean_ai_preamble(report_text: str) -> str:
|
44 |
+
"""Intelligently removes redundant disclaimers or preambles added by the AI."""
|
45 |
+
lines = report_text.strip().split('\n')
|
46 |
+
# AI disclaimers are often short, in the first few lines, and contain specific keywords.
|
47 |
+
# We find the first line that looks like real content (starts with '##' for our format).
|
48 |
+
start_index = 0
|
49 |
+
for i, line in enumerate(lines):
|
50 |
+
if line.strip().startswith('##'):
|
51 |
+
start_index = i
|
52 |
+
break
|
53 |
+
# Failsafe for the first 5 lines if no '##' is found
|
54 |
+
if i > 5:
|
55 |
+
break
|
56 |
+
|
57 |
+
return '\n'.join(lines[start_index:])
|
58 |
|
59 |
+
|
60 |
+
# --- FEATURE 1: Symptom Synthesizer Pipeline (v2.0) ---
|
61 |
async def run_symptom_synthesis(user_query: str, image_input: Image.Image | None) -> str:
|
62 |
+
# (Steps 1-4 remain the same)
|
63 |
+
if not user_query: return "Please enter a symptom description or a medical question to begin."
|
|
|
|
|
64 |
correction_prompt = prompts.get_query_correction_prompt(user_query)
|
65 |
corrected_query = await gemini_handler.generate_text_response(correction_prompt)
|
66 |
+
if not corrected_query: corrected_query = user_query
|
|
|
67 |
term_prompt = prompts.get_term_extraction_prompt(corrected_query)
|
68 |
concepts_str = await gemini_handler.generate_text_response(term_prompt)
|
69 |
concepts = utils.safe_literal_eval(concepts_str)
|
70 |
+
if not isinstance(concepts, list) or not concepts: concepts = [corrected_query]
|
|
|
71 |
search_query = " OR ".join(f'"{c}"' for c in concepts)
|
72 |
async with aiohttp.ClientSession() as session:
|
73 |
tasks = { "pubmed": pubmed_client.search_pubmed(session, search_query, max_results=3), "trials": clinicaltrials_client.find_trials(session, search_query, max_results=3), "openfda": asyncio.gather(*(openfda_client.get_adverse_events(session, c, top_n=3) for c in concepts)), }
|
74 |
+
if image_input: tasks["vision"] = gemini_handler.analyze_image_with_text("In the context of the user query, analyze this image objectively...", image_input)
|
|
|
75 |
raw_results = await asyncio.gather(*tasks.values(), return_exceptions=True)
|
76 |
api_data = dict(zip(tasks.keys(), raw_results))
|
77 |
formatted_data = _format_api_data_for_prompt(api_data)
|
78 |
+
|
79 |
+
# STEP 5: The Grand Synthesis (using new v2.0 prompt)
|
80 |
synthesis_prompt = prompts.get_synthesis_prompt(user_query=user_query, concepts=concepts, pubmed_data=formatted_data['pubmed'], trials_data=formatted_data['trials'], fda_data=formatted_data['openfda'], vision_analysis=formatted_data['vision'])
|
81 |
final_report = await gemini_handler.generate_text_response(synthesis_prompt)
|
82 |
|
83 |
+
# STEP 6: Intelligent Post-Processing
|
84 |
+
cleaned_report = _clean_ai_preamble(final_report)
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# STEP 7: Final Delivery
|
87 |
return f"{prompts.DISCLAIMER}\n\n{cleaned_report}"
|
88 |
|
89 |
|
90 |
+
# --- FEATURE 2: Drug Interaction & Safety Analyzer Pipeline (v2.0) ---
|
91 |
async def run_drug_interaction_analysis(drug_list_str: str) -> str:
|
|
|
92 |
# (Steps remain the same)
|
93 |
if not drug_list_str: return "Please enter a comma-separated list of medications."
|
94 |
drug_names = [name.strip() for name in drug_list_str.split(',') if name.strip()]
|
|
|
104 |
safety_data_dict = dict(zip(drug_names, safety_profiles))
|
105 |
interaction_formatted = utils.format_list_as_markdown([str(i) for i in interaction_data]) if interaction_data else "No interactions found."
|
106 |
safety_formatted = "\n".join([f"Profile for {drug}: {profile}" for drug, profile in safety_data_dict.items()])
|
107 |
+
|
108 |
+
# Synthesis (using new v2.0 prompt)
|
109 |
synthesis_prompt = prompts.get_drug_interaction_synthesis_prompt(drug_names=drug_names, interaction_data=interaction_formatted, safety_data=safety_formatted)
|
110 |
final_report = await gemini_handler.generate_text_response(synthesis_prompt)
|
111 |
|
112 |
+
# Intelligent Post-Processing
|
113 |
+
cleaned_report = _clean_ai_preamble(final_report)
|
|
|
114 |
|
115 |
return f"{prompts.DISCLAIMER}\n\n{cleaned_report}"
|