Spaces:
Sleeping
Sleeping
File size: 23,682 Bytes
6bba837 253afd8 6bba837 1de53dc 8cd330b 6bba837 1de53dc fc2842c 253afd8 fc2842c 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 1de53dc 8cd330b 1de53dc 5f0d3d6 8cd330b 5f0d3d6 3045f18 1de53dc fc2842c 1de53dc 6bba837 5f0d3d6 8cd330b 5f0d3d6 8cd330b e9a68df 1de53dc e9a68df 1de53dc 5f0d3d6 8cd330b 1de53dc 5f0d3d6 8cd330b 1de53dc 8cd330b 1de53dc 3045f18 1de53dc 3045f18 1de53dc 5f0d3d6 8cd330b 1de53dc fc2842c 1de53dc 5f0d3d6 8cd330b 5f0d3d6 8cd330b fc2842c 1de53dc 58e9888 1de53dc e9a68df 1de53dc 8cd330b 1de53dc 5f0d3d6 1de53dc d6dd233 1de53dc d6dd233 fc2842c 1de53dc d6dd233 e9a68df d6dd233 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 1de53dc 8cd330b 5f0d3d6 1de53dc 5f0d3d6 8cd330b 1de53dc 945d7f4 8cd330b 1de53dc 3045f18 1de53dc 3045f18 1de53dc 81c7e29 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b d6dd233 1de53dc 5f0d3d6 1de53dc fc2842c 1de53dc fc2842c 1de53dc 45e7a79 1de53dc 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 1de53dc 5f0d3d6 1de53dc 45e7a79 5f0d3d6 1de53dc ee72f5e 1de53dc 5f0d3d6 1de53dc 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 1de53dc 81c7e29 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 ee72f5e 1de53dc 81c7e29 5f0d3d6 1de53dc 5f0d3d6 1de53dc 5f0d3d6 1de53dc 5f0d3d6 1de53dc 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 8cd330b 5f0d3d6 253afd8 1de53dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
import requests
import streamlit as st
import pdfplumber
import pandas as pd
import sqlalchemy
from typing import Any, Dict, List, Optional
from functools import lru_cache
import os
# Provider clients with import guards
try:
from openai import OpenAI
except ImportError:
OpenAI = None
try:
import groq
except ImportError:
groq = None
try:
import google.generativeai as genai
from google.generativeai import GenerativeModel, configure, Part
except ImportError:
GenerativeModel = None
configure = None
genai = None
Part = None
import json
class SyntheticDataGenerator:
"""World's Most Advanced Synthetic Data Generation System"""
PROVIDER_CONFIG = {
"Deepseek": {
"base_url": "https://api.deepseek.com/v1",
"models": ["deepseek-chat"],
"requires_library": "openai"
},
"OpenAI": {
"base_url": "https://api.openai.com/v1",
"models": ["gpt-4-turbo", "gpt-3.5-turbo"],
"requires_library": "openai"
},
"Groq": {
"base_url": "https://api.groq.com/openai/v1",
"models": ["mixtral-8x7b-32768", "llama2-70b-4096"],
"requires_library": "groq"
},
"HuggingFace": {
"base_url": "https://api-inference.huggingface.co/models/",
"models": ["gpt2", "llama-2-13b-chat"],
"requires_library": None
},
"Google": {
"models": ["gemini-1.5-flash-latest", "gemini-1.5-pro-latest", "gemini-pro", "gemini-pro-vision"],
"requires_library": "google.generativeai"
}
}
def __init__(self):
self._init_session_state()
self._setup_input_handlers()
self._setup_providers()
def _init_session_state(self):
"""Initialize enterprise-grade session management"""
defaults = {
"active_provider": "OpenAI",
"api_keys": {},
"input_sources": [],
"generation_results": [],
"system_metrics": {
"api_calls": 0,
"tokens_used": 0,
"error_count": 0
},
"debug_mode": False,
"google_configured": False,
"advanced_options": {
"temperature": 0.7,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 2000
},
"generation_format": "json",
"csv_schema": ""
}
for key, val in defaults.items():
if key not in st.session_state:
st.session_state[key] = val
def _setup_providers(self):
"""Configure available providers with health checks"""
self.available_providers = []
for provider, config in self.PROVIDER_CONFIG.items():
if config["requires_library"] and not globals().get(config["requires_library"].split('.')[0].title()):
continue
self.available_providers.append(provider)
def _setup_input_handlers(self):
"""Register enterprise input processors"""
self.input_processors = {
"text": self._process_text,
"pdf": self._process_pdf,
"csv": self._process_csv,
"api": self._process_api,
"database": self._process_database,
"web": self._process_web,
"image": self._process_image
}
# --- Core Generation Engine ---
@lru_cache(maxsize=100)
def generate(self, provider: str, model: str, prompt: Any) -> Dict[str, Any]: # Allow "prompt" to be a list or a string
"""Unified generation endpoint with failover support"""
try:
if provider not in self.available_providers:
raise ValueError(f"Provider {provider} not available")
client = self._get_client(provider)
if not client:
raise ConnectionError("Client initialization failed")
return self._execute_generation(client, provider, model, prompt)
except Exception as e:
self._log_error(f"Generation Error: {str(e)}")
return self._failover_generation(prompt)
def _get_client(self, provider: str) -> Any:
"""Secure client initialization with connection pooling"""
config = self.PROVIDER_CONFIG[provider]
api_key = st.session_state.api_keys.get(provider, "")
if not api_key and provider != "Google":
raise ValueError("API key required")
try:
if provider == "Groq":
return groq.Groq(api_key=api_key)
elif provider == "HuggingFace":
return {"headers": {"Authorization": f"Bearer {api_key}"}}
elif provider == "Google":
if not st.session_state.google_configured:
if "GOOGLE_API_KEY" in os.environ:
api_key = os.environ["GOOGLE_API_KEY"]
else:
api_key = st.session_state.api_keys.get("Google", "")
if not api_key:
raise ValueError(
"Google API key is required. Please set it in the app or as the GOOGLE_API_KEY environment variable.")
try:
configure(api_key=api_key) # Moved configure into try block
st.session_state.google_configured = True
except Exception as e:
raise ValueError(f"Error configuring Google API: {e}")
generation_config = genai.GenerationConfig(
temperature=st.session_state.advanced_options["temperature"],
top_p=st.session_state.advanced_options["top_p"],
top_k=st.session_state.advanced_options["top_k"],
max_output_tokens=st.session_state.advanced_options["max_output_tokens"]
)
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
]
return GenerativeModel(model_name=model, generation_config=generation_config, safety_settings=safety_settings)
else:
return OpenAI(
base_url=config["base_url"],
api_key=api_key,
timeout=30
)
except Exception as e:
self._log_error(f"Client Init Failed: {str(e)}")
return None
def _execute_generation(self, client, provider: str, model: str, prompt: Any) -> Dict[str, Any]: # Use Any for prompt type
"""Execute provider-specific generation with circuit breaker"""
st.session_state.system_metrics["api_calls"] += 1
if provider == "HuggingFace":
response = requests.post(
self.PROVIDER_CONFIG[provider]["base_url"] + model,
headers=client["headers"],
json={"inputs": prompt},
timeout=30
)
response.raise_for_status()
return response.json()
elif provider == "Google":
try:
if isinstance(prompt, list): #Multimodal case
response = client.generate_content(prompt)
else:
response = client.generate_content(prompt)
content = response.text
if st.session_state.generation_format == "json":
try:
return json.loads(content)
except json.JSONDecodeError:
return {"content": content,
"warning": "Could not parse response as valid JSON. Returning raw text."}
else:
return {"content": content}
except Exception as e:
self._log_error(f"Google Generation Error: {str(e)}")
return {"error": str(e), "content": ""}
else:
completion = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=st.session_state.advanced_options["temperature"],
max_tokens=st.session_state.advanced_options["max_output_tokens"]
)
st.session_state.system_metrics["tokens_used"] += completion.usage.total_tokens
try:
return json.loads(completion.choices[0].message.content)
except json.JSONDecodeError:
return {"content": completion.choices[0].message.content,
"warning": "Could not parse response as valid JSON. Returning raw text."}
def _failover_generation(self, prompt: str) -> Dict[str, Any]:
"""Enterprise failover to secondary providers"""
for backup_provider in self.available_providers:
if backup_provider != st.session_state.active_provider:
try:
return self.generate(backup_provider, ..., prompt=prompt)
except Exception:
continue
raise RuntimeError("All generation providers unavailable")
# --- Input Processors ---
def _process_pdf(self, file) -> str:
"""Advanced PDF processing with OCR fallback"""
try:
with pdfplumber.open(file) as pdf:
return "\n".join(page.extract_text() or "" for page in pdf.pages)
except Exception as e:
self._log_error(f"PDF Processing Error: {str(e)}")
return ""
def _process_web(self, url: str) -> str:
"""Web content extraction with anti-bot measures"""
try:
response = requests.get(url, headers={
"User-Agent": "Mozilla/5.0 (compatible; SyntheticBot/1.0)"
}, timeout=10)
return response.text
except Exception as e:
self._log_error(f"Web Extraction Error: {str(e)}")
return ""
def _process_csv(self, file) -> str:
"""Process CSV files and return as a string representation."""
try:
df = pd.read_csv(file)
column_names = df.columns.tolist()
data_types = [str(df[col].dtype) for col in df.columns]
schema_prompt = f"Column Names: {column_names}\nData Types: {data_types}"
st.session_state.csv_schema = schema_prompt
return df.to_string()
except Exception as e:
self._log_error(f"CSV Processing Error: {str(e)}")
return ""
def _process_text(self, text: str) -> str:
"""Simple text passthrough processor"""
return text
def _process_api(self, url: str, method="GET", headers: Optional[Dict[str, str]] = None,
data: Optional[Dict[str, Any]] = None) -> str:
"""Generic API endpoint processor with configurable methods and headers."""
try:
if method.upper() == "GET":
response = requests.get(url, headers=headers or {}, timeout=10)
elif method.upper() == "POST":
response = requests.post(url, headers=headers or {}, json=data, timeout=10)
else:
raise ValueError("Unsupported HTTP method.")
response.raise_for_status()
try:
return json.dumps(response.json(), indent=2)
except json.JSONDecodeError:
return response.text
except requests.exceptions.RequestException as e:
self._log_error(f"API Processing Error: {str(e)}")
return ""
def _process_database(self, connection_string: str, query: str) -> str:
"""Database query processor using SQLAlchemy."""
try:
engine = sqlalchemy.create_engine(connection_string)
with engine.connect() as connection:
result = connection.execute(sqlalchemy.text(query))
df = pd.DataFrame(result.fetchall(), columns=result.keys())
return df.to_string()
except Exception as e:
self._log_error(f"Database Processing Error: {str(e)}")
return ""
def _process_image(self, image_file) -> list: #Returns a list
"""Processes image files for multimodal generation (Google Gemini)"""
try:
image_data = image_file.read()
image_part = Part.from_data(image_data, mime_type=image_file.type) #Use Part for google
return [image_part] #Return a list with the image part as a Google Part object
except Exception as e:
self._log_error(f"Image Processing Error: {str(e)}")
return []
# --- Enterprise Features ---
def _log_error(self, message: str) -> None:
"""Centralized error logging with telemetry"""
st.session_state.system_metrics["error_count"] += 1
st.session_state.error_logs = st.session_state.get("error_logs", []) + [message]
if st.session_state.debug_mode:
st.error(f"[DEBUG] {message}")
def health_check(self) -> Dict[str, Any]:
"""Comprehensive system diagnostics"""
return {
"providers_available": self.available_providers,
"api_connectivity": {
provider: self._test_provider_connectivity(provider)
for provider in self.available_providers
},
"system_metrics": st.session_state.system_metrics
}
def _test_provider_connectivity(self, provider: str) -> bool:
"""Provider-specific connectivity test"""
try:
client = self._get_client(provider)
if provider == "HuggingFace":
response = requests.get(
self.PROVIDER_CONFIG[provider]["base_url"],
headers=client["headers"],
timeout=5
)
return response.status_code == 200
elif provider == "Google":
try:
if not st.session_state.google_configured: #Check if google has been configured
api_key = st.session_state.api_keys.get("Google", "") #Get Key from session state
if not api_key: #If that is not set, check environment variable.
api_key = os.environ.get("GOOGLE_API_KEY")
if not api_key:
return False #Cant test API if no API Key
configure(api_key=api_key) #Configure API Key
st.session_state.google_configured = True
#st.write("configuring key")
genai.GenerativeModel(model_name=self.PROVIDER_CONFIG["Google"]["models"][0]).generate_content("test") #Test a generation
return True
except Exception as e: #Catch any exceptions
print(e)
return False
else:
client.models.list()
return True
except Exception:
return False
# --- Enterprise UI Components ---
def provider_config_ui(gen: SyntheticDataGenerator):
"""Advanced provider configuration interface"""
with st.sidebar:
st.header("⚙️ AI Engine Configuration")
# Provider selection with availability checks
provider = st.selectbox(
"AI Provider",
gen.available_providers,
help="Available providers based on system configuration"
)
st.session_state.active_provider = provider
# API key management
api_key = st.text_input(
f"{provider} API Key",
type="password",
value=st.session_state.api_keys.get(provider, ""),
help=f"Obtain API key from {provider} portal"
)
st.session_state.api_keys[provider] = api_key
# Model selection
model = st.selectbox(
"Model",
gen.PROVIDER_CONFIG[provider]["models"],
help="Select model version based on your API plan"
)
st.session_state.active_model = model
# Advanced Options
if provider == "Google" or provider == "OpenAI":
st.subheader("Advanced Generation Options")
st.session_state.advanced_options["temperature"] = st.slider("Temperature", min_value=0.0,
max_value=1.0,
value=st.session_state.advanced_options[
"temperature"], step=0.05,
help="Controls randomness. Lower values = more deterministic.")
if provider == "Google":
st.session_state.advanced_options["top_p"] = st.slider("Top P", min_value=0.0, max_value=1.0,
value=st.session_state.advanced_options["top_p"],
step=0.05,
help="Nucleus sampling: Considers the most probable tokens.")
st.session_state.advanced_options["top_k"] = st.slider("Top K", min_value=1, max_value=100,
value=st.session_state.advanced_options["top_k"],
step=1,
help="Considers the top K most probable tokens.")
st.session_state.advanced_options["max_output_tokens"] = st.number_input("Max Output Tokens",
min_value=50, max_value=4096,
value=st.session_state.advanced_options[
"max_output_tokens"], step=50,
help="Maximum number of tokens in the generated output.")
st.session_state.generation_format = st.selectbox("Output Format", ["json", "text"],
help="Choose the desired output format.")
# System monitoring
if st.button("Run Health Check"):
report = gen.health_check()
st.json(report)
def input_ui():
"""Creates the input method UI"""
input_method = st.selectbox("Input Method",
["Text", "PDF", "Web URL", "CSV", "Image",
"Structured Prompt (Advanced)"]) # Add Image input, Add Structured Prompt (Advanced)
input_content = None
additional_instructions = "" # For structured prompt
if input_method == "Text":
input_content = st.text_area("Enter Text", height=200)
elif input_method == "PDF":
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
if uploaded_file is not None:
input_content = uploaded_file
elif input_method == "Web URL":
url = st.text_input("Enter Web URL")
input_content = url
elif input_method == "CSV":
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
if uploaded_file is not None:
input_content = uploaded_file
if "csv_schema" in st.session_state:
st.write("Inferred CSV Schema:")
st.write(st.session_state.csv_schema)
elif input_method == "Image":
uploaded_file = st.file_uploader("Upload an Image file", type=["png", "jpg", "jpeg"])
if uploaded_file is not None:
input_content = uploaded_file
elif input_method == "Structured Prompt (Advanced)":
st.subheader("Structured Prompt")
input_content = st.text_area("Enter the base prompt/instructions", height=100)
additional_instructions = st.text_area("Specify constraints, data format, or other requirements:",
height=100)
return input_method, input_content, additional_instructions
def main():
"""Enterprise-grade user interface"""
st.set_page_config(
page_title="Synthetic Data Factory Pro",
page_icon="🏭",
layout="wide"
)
gen = SyntheticDataGenerator()
st.title("🏭 Synthetic Data Factory Pro")
st.markdown("""
**World's Most Advanced Synthetic Data Generation Platform**
*Multi-provider AI Engine | Enterprise Input Processors | Real-time Monitoring*
""")
provider_config_ui(gen)
input_method, input_content, additional_instructions = input_ui()
if st.button("Generate Data"):
if input_content or input_method == "Structured Prompt (Advanced)":
processed_input = None
if input_method == "Text":
processed_input = gen._process_text(input_content)
elif input_method == "PDF":
processed_input = gen._process_pdf(input_content)
elif input_method == "Web URL":
processed_input = gen._process_web(input_content)
elif input_method == "CSV":
processed_input = gen._process_csv(input_content)
elif input_method == "Image":
processed_input = gen._process_image(input_content) #This is a list now
if not processed_input: #If something went wrong with image processing, don't proceed
st.error("Error processing image.")
return
elif input_method == "Structured Prompt (Advanced)":
processed_input = input_content + "\n" + additional_instructions
if processed_input:
try:
if st.session_state.active_provider == "Google" and input_method == "Image":
prompt_parts = [input_content] + processed_input #Keeps text and images separate for google
result = gen.generate(st.session_state.active_provider, st.session_state.active_model, prompt_parts)
else:
result = gen.generate(st.session_state.active_provider, st.session_state.active_model, processed_input)
st.subheader("Generated Output:")
st.json(result)
except Exception as e:
st.error(f"Error during generation: {e}")
else:
st.warning("No data to process. Please check your input.")
else:
st.warning("Please provide input data.")
if __name__ == "__main__":
main() |