File size: 23,682 Bytes
6bba837
253afd8
 
 
6bba837
1de53dc
 
8cd330b
6bba837
1de53dc
fc2842c
 
 
 
253afd8
fc2842c
 
 
 
 
5f0d3d6
 
8cd330b
5f0d3d6
 
 
8cd330b
 
5f0d3d6
8cd330b
5f0d3d6
1de53dc
 
8cd330b
1de53dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f0d3d6
 
8cd330b
5f0d3d6
3045f18
1de53dc
 
 
 
 
 
 
 
 
fc2842c
1de53dc
 
 
 
 
 
 
 
6bba837
5f0d3d6
8cd330b
 
 
 
 
 
5f0d3d6
8cd330b
 
e9a68df
1de53dc
e9a68df
1de53dc
 
 
 
 
 
5f0d3d6
8cd330b
1de53dc
 
 
 
 
 
 
 
 
 
5f0d3d6
8cd330b
1de53dc
 
 
 
8cd330b
1de53dc
3045f18
1de53dc
 
 
 
 
 
 
 
 
3045f18
1de53dc
 
 
 
 
 
 
5f0d3d6
8cd330b
1de53dc
 
fc2842c
1de53dc
 
 
 
5f0d3d6
 
8cd330b
 
 
 
 
 
 
 
 
 
 
 
5f0d3d6
 
 
 
 
 
 
8cd330b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc2842c
1de53dc
 
 
 
 
58e9888
1de53dc
e9a68df
1de53dc
8cd330b
 
1de53dc
 
5f0d3d6
1de53dc
d6dd233
1de53dc
d6dd233
fc2842c
1de53dc
d6dd233
e9a68df
d6dd233
5f0d3d6
 
8cd330b
 
 
 
 
 
 
 
 
5f0d3d6
 
8cd330b
5f0d3d6
8cd330b
5f0d3d6
8cd330b
 
5f0d3d6
8cd330b
5f0d3d6
 
 
 
1de53dc
 
 
 
8cd330b
5f0d3d6
1de53dc
 
5f0d3d6
 
 
8cd330b
 
1de53dc
 
 
 
 
945d7f4
8cd330b
1de53dc
 
 
 
 
 
 
 
 
 
3045f18
1de53dc
 
3045f18
1de53dc
 
 
 
 
 
 
 
 
 
81c7e29
5f0d3d6
8cd330b
 
 
 
 
 
 
 
 
 
 
5f0d3d6
 
 
 
 
8cd330b
 
5f0d3d6
 
 
 
 
 
 
 
8cd330b
5f0d3d6
 
8cd330b
5f0d3d6
8cd330b
5f0d3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cd330b
 
5f0d3d6
 
8cd330b
 
5f0d3d6
 
 
8cd330b
d6dd233
1de53dc
 
 
 
 
5f0d3d6
1de53dc
 
fc2842c
1de53dc
 
 
 
 
 
 
 
 
 
fc2842c
1de53dc
 
45e7a79
1de53dc
 
 
 
 
 
 
 
5f0d3d6
 
8cd330b
 
 
 
 
 
 
5f0d3d6
8cd330b
5f0d3d6
 
 
8cd330b
5f0d3d6
8cd330b
 
5f0d3d6
8cd330b
5f0d3d6
 
 
1de53dc
 
 
 
 
 
 
 
 
 
 
5f0d3d6
1de53dc
 
 
 
 
45e7a79
5f0d3d6
 
1de53dc
 
 
 
 
 
ee72f5e
1de53dc
5f0d3d6
1de53dc
 
 
 
 
 
5f0d3d6
 
8cd330b
 
5f0d3d6
8cd330b
 
 
 
 
5f0d3d6
8cd330b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f0d3d6
1de53dc
 
 
 
81c7e29
8cd330b
5f0d3d6
 
8cd330b
 
 
5f0d3d6
8cd330b
5f0d3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cd330b
5f0d3d6
 
 
 
 
 
 
 
 
8cd330b
 
 
 
5f0d3d6
 
ee72f5e
1de53dc
 
 
 
 
81c7e29
5f0d3d6
1de53dc
5f0d3d6
1de53dc
 
5f0d3d6
1de53dc
 
5f0d3d6
1de53dc
5f0d3d6
8cd330b
5f0d3d6
 
8cd330b
5f0d3d6
 
 
 
 
 
 
 
 
 
 
8cd330b
 
 
 
 
5f0d3d6
8cd330b
5f0d3d6
 
 
 
8cd330b
 
5f0d3d6
8cd330b
5f0d3d6
 
8cd330b
5f0d3d6
 
 
 
 
 
 
253afd8
1de53dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import requests
import streamlit as st
import pdfplumber
import pandas as pd
import sqlalchemy
from typing import Any, Dict, List, Optional
from functools import lru_cache
import os

# Provider clients with import guards
try:
    from openai import OpenAI
except ImportError:
    OpenAI = None

try:
    import groq
except ImportError:
    groq = None

try:
    import google.generativeai as genai
    from google.generativeai import GenerativeModel, configure, Part
except ImportError:
    GenerativeModel = None
    configure = None
    genai = None
    Part = None

import json

class SyntheticDataGenerator:
    """World's Most Advanced Synthetic Data Generation System"""

    PROVIDER_CONFIG = {
        "Deepseek": {
            "base_url": "https://api.deepseek.com/v1",
            "models": ["deepseek-chat"],
            "requires_library": "openai"
        },
        "OpenAI": {
            "base_url": "https://api.openai.com/v1",
            "models": ["gpt-4-turbo", "gpt-3.5-turbo"],
            "requires_library": "openai"
        },
        "Groq": {
            "base_url": "https://api.groq.com/openai/v1",
            "models": ["mixtral-8x7b-32768", "llama2-70b-4096"],
            "requires_library": "groq"
        },
        "HuggingFace": {
            "base_url": "https://api-inference.huggingface.co/models/",
            "models": ["gpt2", "llama-2-13b-chat"],
            "requires_library": None
        },
        "Google": {
            "models": ["gemini-1.5-flash-latest", "gemini-1.5-pro-latest", "gemini-pro", "gemini-pro-vision"],
            "requires_library": "google.generativeai"
        }
    }

    def __init__(self):
        self._init_session_state()
        self._setup_input_handlers()
        self._setup_providers()

    def _init_session_state(self):
        """Initialize enterprise-grade session management"""
        defaults = {
            "active_provider": "OpenAI",
            "api_keys": {},
            "input_sources": [],
            "generation_results": [],
            "system_metrics": {
                "api_calls": 0,
                "tokens_used": 0,
                "error_count": 0
            },
            "debug_mode": False,
            "google_configured": False,
            "advanced_options": {
                "temperature": 0.7,
                "top_p": 0.95,
                "top_k": 40,
                "max_output_tokens": 2000
            },
            "generation_format": "json",
            "csv_schema": ""
        }
        for key, val in defaults.items():
            if key not in st.session_state:
                st.session_state[key] = val

    def _setup_providers(self):
        """Configure available providers with health checks"""
        self.available_providers = []
        for provider, config in self.PROVIDER_CONFIG.items():
            if config["requires_library"] and not globals().get(config["requires_library"].split('.')[0].title()):
                continue
            self.available_providers.append(provider)

    def _setup_input_handlers(self):
        """Register enterprise input processors"""
        self.input_processors = {
            "text": self._process_text,
            "pdf": self._process_pdf,
            "csv": self._process_csv,
            "api": self._process_api,
            "database": self._process_database,
            "web": self._process_web,
            "image": self._process_image
        }

    # --- Core Generation Engine ---
    @lru_cache(maxsize=100)
    def generate(self, provider: str, model: str, prompt: Any) -> Dict[str, Any]:  # Allow "prompt" to be a list or a string
        """Unified generation endpoint with failover support"""
        try:
            if provider not in self.available_providers:
                raise ValueError(f"Provider {provider} not available")

            client = self._get_client(provider)
            if not client:
                raise ConnectionError("Client initialization failed")

            return self._execute_generation(client, provider, model, prompt)

        except Exception as e:
            self._log_error(f"Generation Error: {str(e)}")
            return self._failover_generation(prompt)

    def _get_client(self, provider: str) -> Any:
        """Secure client initialization with connection pooling"""
        config = self.PROVIDER_CONFIG[provider]
        api_key = st.session_state.api_keys.get(provider, "")

        if not api_key and provider != "Google":
            raise ValueError("API key required")

        try:
            if provider == "Groq":
                return groq.Groq(api_key=api_key)
            elif provider == "HuggingFace":
                return {"headers": {"Authorization": f"Bearer {api_key}"}}
            elif provider == "Google":
                if not st.session_state.google_configured:
                    if "GOOGLE_API_KEY" in os.environ:
                        api_key = os.environ["GOOGLE_API_KEY"]
                    else:
                        api_key = st.session_state.api_keys.get("Google", "")
                        if not api_key:
                            raise ValueError(
                                "Google API key is required. Please set it in the app or as the GOOGLE_API_KEY environment variable.")
                    try:
                        configure(api_key=api_key)  # Moved configure into try block
                        st.session_state.google_configured = True
                    except Exception as e:
                        raise ValueError(f"Error configuring Google API: {e}")

                generation_config = genai.GenerationConfig(
                    temperature=st.session_state.advanced_options["temperature"],
                    top_p=st.session_state.advanced_options["top_p"],
                    top_k=st.session_state.advanced_options["top_k"],
                    max_output_tokens=st.session_state.advanced_options["max_output_tokens"]
                )
                safety_settings = [
                    {
                        "category": "HARM_CATEGORY_HARASSMENT",
                        "threshold": "BLOCK_MEDIUM_AND_ABOVE"
                    },
                    {
                        "category": "HARM_CATEGORY_HATE_SPEECH",
                        "threshold": "BLOCK_MEDIUM_AND_ABOVE"
                    },
                    {
                        "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                        "threshold": "BLOCK_MEDIUM_AND_ABOVE"
                    },
                    {
                        "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                        "threshold": "BLOCK_MEDIUM_AND_ABOVE"
                    },
                ]
                return GenerativeModel(model_name=model, generation_config=generation_config, safety_settings=safety_settings)
            else:
                return OpenAI(
                    base_url=config["base_url"],
                    api_key=api_key,
                    timeout=30
                )
        except Exception as e:
            self._log_error(f"Client Init Failed: {str(e)}")
            return None

    def _execute_generation(self, client, provider: str, model: str, prompt: Any) -> Dict[str, Any]: # Use Any for prompt type

        """Execute provider-specific generation with circuit breaker"""
        st.session_state.system_metrics["api_calls"] += 1

        if provider == "HuggingFace":
            response = requests.post(
                self.PROVIDER_CONFIG[provider]["base_url"] + model,
                headers=client["headers"],
                json={"inputs": prompt},
                timeout=30
            )
            response.raise_for_status()
            return response.json()
        elif provider == "Google":
            try:
                if isinstance(prompt, list): #Multimodal case

                    response = client.generate_content(prompt)

                else:

                    response = client.generate_content(prompt)


                content = response.text

                if st.session_state.generation_format == "json":
                    try:
                        return json.loads(content)
                    except json.JSONDecodeError:
                        return {"content": content,
                                "warning": "Could not parse response as valid JSON.  Returning raw text."}
                else:
                    return {"content": content}

            except Exception as e:
                self._log_error(f"Google Generation Error: {str(e)}")
                return {"error": str(e), "content": ""}
        else:
            completion = client.chat.completions.create(
                model=model,
                messages=[{"role": "user", "content": prompt}],
                temperature=st.session_state.advanced_options["temperature"],
                max_tokens=st.session_state.advanced_options["max_output_tokens"]
            )
            st.session_state.system_metrics["tokens_used"] += completion.usage.total_tokens
            try:
                return json.loads(completion.choices[0].message.content)
            except json.JSONDecodeError:
                return {"content": completion.choices[0].message.content,
                        "warning": "Could not parse response as valid JSON.  Returning raw text."}

    def _failover_generation(self, prompt: str) -> Dict[str, Any]:
        """Enterprise failover to secondary providers"""
        for backup_provider in self.available_providers:
            if backup_provider != st.session_state.active_provider:
                try:
                    return self.generate(backup_provider, ..., prompt=prompt)
                except Exception:
                    continue
        raise RuntimeError("All generation providers unavailable")

    # --- Input Processors ---
    def _process_pdf(self, file) -> str:
        """Advanced PDF processing with OCR fallback"""
        try:
            with pdfplumber.open(file) as pdf:
                return "\n".join(page.extract_text() or "" for page in pdf.pages)
        except Exception as e:
            self._log_error(f"PDF Processing Error: {str(e)}")
            return ""

    def _process_web(self, url: str) -> str:
        """Web content extraction with anti-bot measures"""
        try:
            response = requests.get(url, headers={
                "User-Agent": "Mozilla/5.0 (compatible; SyntheticBot/1.0)"
            }, timeout=10)
            return response.text
        except Exception as e:
            self._log_error(f"Web Extraction Error: {str(e)}")
            return ""

    def _process_csv(self, file) -> str:
        """Process CSV files and return as a string representation."""
        try:
            df = pd.read_csv(file)
            column_names = df.columns.tolist()
            data_types = [str(df[col].dtype) for col in df.columns]
            schema_prompt = f"Column Names: {column_names}\nData Types: {data_types}"
            st.session_state.csv_schema = schema_prompt
            return df.to_string()
        except Exception as e:
            self._log_error(f"CSV Processing Error: {str(e)}")
            return ""

    def _process_text(self, text: str) -> str:
        """Simple text passthrough processor"""
        return text

    def _process_api(self, url: str, method="GET", headers: Optional[Dict[str, str]] = None,
                     data: Optional[Dict[str, Any]] = None) -> str:
        """Generic API endpoint processor with configurable methods and headers."""
        try:
            if method.upper() == "GET":
                response = requests.get(url, headers=headers or {}, timeout=10)
            elif method.upper() == "POST":
                response = requests.post(url, headers=headers or {}, json=data, timeout=10)
            else:
                raise ValueError("Unsupported HTTP method.")
            response.raise_for_status()

            try:
                return json.dumps(response.json(), indent=2)
            except json.JSONDecodeError:
                return response.text
        except requests.exceptions.RequestException as e:
            self._log_error(f"API Processing Error: {str(e)}")
            return ""

    def _process_database(self, connection_string: str, query: str) -> str:
        """Database query processor using SQLAlchemy."""
        try:
            engine = sqlalchemy.create_engine(connection_string)
            with engine.connect() as connection:
                result = connection.execute(sqlalchemy.text(query))
                df = pd.DataFrame(result.fetchall(), columns=result.keys())
                return df.to_string()
        except Exception as e:
            self._log_error(f"Database Processing Error: {str(e)}")
            return ""

    def _process_image(self, image_file) -> list: #Returns a list
        """Processes image files for multimodal generation (Google Gemini)"""
        try:
            image_data = image_file.read()
            image_part = Part.from_data(image_data, mime_type=image_file.type) #Use Part for google
            return [image_part] #Return a list with the image part as a Google Part object

        except Exception as e:
            self._log_error(f"Image Processing Error: {str(e)}")
            return []

    # --- Enterprise Features ---
    def _log_error(self, message: str) -> None:
        """Centralized error logging with telemetry"""
        st.session_state.system_metrics["error_count"] += 1
        st.session_state.error_logs = st.session_state.get("error_logs", []) + [message]

        if st.session_state.debug_mode:
            st.error(f"[DEBUG] {message}")

    def health_check(self) -> Dict[str, Any]:
        """Comprehensive system diagnostics"""
        return {
            "providers_available": self.available_providers,
            "api_connectivity": {
                provider: self._test_provider_connectivity(provider)
                for provider in self.available_providers
            },
            "system_metrics": st.session_state.system_metrics
        }

    def _test_provider_connectivity(self, provider: str) -> bool:
        """Provider-specific connectivity test"""
        try:
            client = self._get_client(provider)
            if provider == "HuggingFace":
                response = requests.get(
                    self.PROVIDER_CONFIG[provider]["base_url"],
                    headers=client["headers"],
                    timeout=5
                )
                return response.status_code == 200
            elif provider == "Google":
                try:
                    if not st.session_state.google_configured: #Check if google has been configured

                        api_key = st.session_state.api_keys.get("Google", "") #Get Key from session state

                        if not api_key: #If that is not set, check environment variable.
                            api_key = os.environ.get("GOOGLE_API_KEY")

                        if not api_key:
                            return False #Cant test API if no API Key

                        configure(api_key=api_key) #Configure API Key
                        st.session_state.google_configured = True
                        #st.write("configuring key")

                    genai.GenerativeModel(model_name=self.PROVIDER_CONFIG["Google"]["models"][0]).generate_content("test") #Test a generation
                    return True

                except Exception as e: #Catch any exceptions
                    print(e)
                    return False

            else:
                client.models.list()
                return True
        except Exception:
            return False

# --- Enterprise UI Components ---
def provider_config_ui(gen: SyntheticDataGenerator):
    """Advanced provider configuration interface"""
    with st.sidebar:
        st.header("⚙️ AI Engine Configuration")

        # Provider selection with availability checks
        provider = st.selectbox(
            "AI Provider",
            gen.available_providers,
            help="Available providers based on system configuration"
        )
        st.session_state.active_provider = provider

        # API key management
        api_key = st.text_input(
            f"{provider} API Key",
            type="password",
            value=st.session_state.api_keys.get(provider, ""),
            help=f"Obtain API key from {provider} portal"
        )
        st.session_state.api_keys[provider] = api_key

        # Model selection
        model = st.selectbox(
            "Model",
            gen.PROVIDER_CONFIG[provider]["models"],
            help="Select model version based on your API plan"
        )
        st.session_state.active_model = model

        # Advanced Options
        if provider == "Google" or provider == "OpenAI":
            st.subheader("Advanced Generation Options")
            st.session_state.advanced_options["temperature"] = st.slider("Temperature", min_value=0.0,
                                                                           max_value=1.0,
                                                                           value=st.session_state.advanced_options[
                                                                               "temperature"], step=0.05,
                                                                           help="Controls randomness. Lower values = more deterministic.")
            if provider == "Google":
                st.session_state.advanced_options["top_p"] = st.slider("Top P", min_value=0.0, max_value=1.0,
                                                                        value=st.session_state.advanced_options["top_p"],
                                                                        step=0.05,
                                                                        help="Nucleus sampling: Considers the most probable tokens.")
                st.session_state.advanced_options["top_k"] = st.slider("Top K", min_value=1, max_value=100,
                                                                        value=st.session_state.advanced_options["top_k"],
                                                                        step=1,
                                                                        help="Considers the top K most probable tokens.")

            st.session_state.advanced_options["max_output_tokens"] = st.number_input("Max Output Tokens",
                                                                                      min_value=50, max_value=4096,
                                                                                      value=st.session_state.advanced_options[
                                                                                          "max_output_tokens"], step=50,
                                                                                      help="Maximum number of tokens in the generated output.")

        st.session_state.generation_format = st.selectbox("Output Format", ["json", "text"],
                                                           help="Choose the desired output format.")

        # System monitoring
        if st.button("Run Health Check"):
            report = gen.health_check()
            st.json(report)


def input_ui():
    """Creates the input method UI"""
    input_method = st.selectbox("Input Method",
                                ["Text", "PDF", "Web URL", "CSV", "Image",
                                 "Structured Prompt (Advanced)"])  # Add Image input, Add Structured Prompt (Advanced)
    input_content = None
    additional_instructions = ""  # For structured prompt

    if input_method == "Text":
        input_content = st.text_area("Enter Text", height=200)
    elif input_method == "PDF":
        uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
        if uploaded_file is not None:
            input_content = uploaded_file
    elif input_method == "Web URL":
        url = st.text_input("Enter Web URL")
        input_content = url
    elif input_method == "CSV":
        uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
        if uploaded_file is not None:
            input_content = uploaded_file
            if "csv_schema" in st.session_state:
                st.write("Inferred CSV Schema:")
                st.write(st.session_state.csv_schema)

    elif input_method == "Image":
        uploaded_file = st.file_uploader("Upload an Image file", type=["png", "jpg", "jpeg"])
        if uploaded_file is not None:
            input_content = uploaded_file

    elif input_method == "Structured Prompt (Advanced)":
        st.subheader("Structured Prompt")
        input_content = st.text_area("Enter the base prompt/instructions", height=100)
        additional_instructions = st.text_area("Specify constraints, data format, or other requirements:",
                                                height=100)

    return input_method, input_content, additional_instructions


def main():
    """Enterprise-grade user interface"""
    st.set_page_config(
        page_title="Synthetic Data Factory Pro",
        page_icon="🏭",
        layout="wide"
    )

    gen = SyntheticDataGenerator()

    st.title("🏭 Synthetic Data Factory Pro")
    st.markdown("""
    **World's Most Advanced Synthetic Data Generation Platform**
    *Multi-provider AI Engine | Enterprise Input Processors | Real-time Monitoring*
    """)

    provider_config_ui(gen)

    input_method, input_content, additional_instructions = input_ui()

    if st.button("Generate Data"):
        if input_content or input_method == "Structured Prompt (Advanced)":
            processed_input = None

            if input_method == "Text":
                processed_input = gen._process_text(input_content)
            elif input_method == "PDF":
                processed_input = gen._process_pdf(input_content)
            elif input_method == "Web URL":
                processed_input = gen._process_web(input_content)
            elif input_method == "CSV":
                processed_input = gen._process_csv(input_content)
            elif input_method == "Image":
                processed_input = gen._process_image(input_content) #This is a list now
                if not processed_input: #If something went wrong with image processing, don't proceed
                    st.error("Error processing image.")
                    return

            elif input_method == "Structured Prompt (Advanced)":
                processed_input = input_content + "\n" + additional_instructions

            if processed_input:
                try:
                    if st.session_state.active_provider == "Google" and input_method == "Image":
                        prompt_parts = [input_content] + processed_input #Keeps text and images separate for google
                        result = gen.generate(st.session_state.active_provider, st.session_state.active_model, prompt_parts)
                    else:
                        result = gen.generate(st.session_state.active_provider, st.session_state.active_model, processed_input)

                    st.subheader("Generated Output:")
                    st.json(result)
                except Exception as e:
                    st.error(f"Error during generation: {e}")
            else:
                st.warning("No data to process. Please check your input.")
        else:
            st.warning("Please provide input data.")

if __name__ == "__main__":
    main()