File size: 16,222 Bytes
6bba837
 
253afd8
 
 
6bba837
 
 
ee72f5e
fc2842c
 
 
 
253afd8
fc2842c
 
 
 
 
ee72f5e
d6dd233
e9a68df
fc2842c
e9a68df
81c7e29
ee72f5e
6bba837
ee72f5e
 
6bba837
 
e9a68df
 
 
ee72f5e
fc2842c
ee72f5e
 
 
 
 
 
 
 
 
 
fc2842c
ee72f5e
6bba837
ee72f5e
6bba837
3045f18
fc2842c
e9a68df
3045f18
 
fc2842c
 
3045f18
 
fc2842c
6bba837
3045f18
 
 
e9a68df
d6dd233
3045f18
ee72f5e
6bba837
fc2842c
6bba837
3045f18
fc2842c
3045f18
 
e9a68df
3045f18
ee72f5e
6bba837
fc2842c
 
6bba837
fc2842c
 
6bba837
 
fc2842c
ee72f5e
 
 
e9a68df
fc2842c
e9a68df
 
ee72f5e
fc2842c
ee72f5e
fc2842c
 
ee72f5e
 
fc2842c
 
ee72f5e
fc2842c
e9a68df
58e9888
fc2842c
 
d6dd233
fc2842c
 
e9a68df
fc2842c
 
ee72f5e
fc2842c
3045f18
 
ee72f5e
fc2842c
3045f18
fc2842c
 
ee72f5e
fc2842c
3045f18
fc2842c
6bba837
fc2842c
 
 
 
ee72f5e
fc2842c
3045f18
e9a68df
3045f18
e9a68df
fc2842c
 
3045f18
fc2842c
 
ee72f5e
fc2842c
4df2f52
fc2842c
 
 
 
 
ee72f5e
fc2842c
 
ee72f5e
fc2842c
ee72f5e
 
4df2f52
 
 
ee72f5e
 
6bba837
ee72f5e
6bba837
fc2842c
6bba837
fc2842c
6bba837
ee72f5e
fc2842c
 
 
 
 
ee72f5e
fc2842c
 
 
 
 
ee72f5e
81c7e29
fc2842c
 
 
 
 
4df2f52
 
 
 
ee72f5e
 
 
4df2f52
ee72f5e
58e9888
 
fc2842c
58e9888
ee72f5e
fc2842c
ee72f5e
e9a68df
81c7e29
fc2842c
 
 
 
d6dd233
81c7e29
fc2842c
e9a68df
fc2842c
e9a68df
ee72f5e
fc2842c
ee72f5e
d6dd233
4df2f52
d6dd233
fc2842c
d6dd233
fc2842c
 
d6dd233
e9a68df
81c7e29
d6dd233
 
fc2842c
d6dd233
ee72f5e
 
6bba837
ee72f5e
 
6bba837
4df2f52
3045f18
d6dd233
ee72f5e
4df2f52
ee72f5e
fc2842c
 
ee72f5e
6bba837
ee72f5e
 
fc2842c
ee72f5e
fc2842c
4df2f52
ee72f5e
 
 
 
 
 
 
 
 
 
 
 
 
3045f18
fc2842c
ee72f5e
3045f18
81c7e29
ee72f5e
d6dd233
ee72f5e
 
58e9888
ee72f5e
fc2842c
 
6bba837
ee72f5e
fc2842c
6bba837
ee72f5e
6bba837
 
ee72f5e
fc2842c
 
 
ee72f5e
4df2f52
ee72f5e
fc2842c
 
 
 
 
 
 
 
4df2f52
 
fc2842c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6dd233
fc2842c
 
d6dd233
fc2842c
 
 
 
 
 
 
 
 
 
 
 
ee72f5e
 
 
 
 
 
 
 
 
 
 
 
fc2842c
ee72f5e
81c7e29
ee72f5e
 
fc2842c
 
 
 
 
 
 
81c7e29
ee72f5e
 
 
81c7e29
 
ee72f5e
 
81c7e29
 
ee72f5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a68df
81c7e29
253afd8
6bba837
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import json
import requests
import streamlit as st
import pdfplumber
import pandas as pd
import sqlalchemy
from typing import Any, Dict, List

# Provider clients – ensure these libraries are installed
try:
    from openai import OpenAI
except ImportError:
    OpenAI = None

try:
    import groq
except ImportError:
    groq = None

# Hugging Face inference endpoint
HF_API_URL = "https://api-inference.huggingface.co/models/"
DEFAULT_TEMPERATURE = 0.1
GROQ_MODEL = "mixtral-8x7b-32768"


class QADataGenerator:
    """
    A Q&A Synthetic Generator that extracts and generates question-answer pairs
    from various input sources using an LLM provider.
    """
    def __init__(self) -> None:
        self._setup_providers()
        self._setup_input_handlers()
        self._initialize_session_state()
        # This prompt instructs the LLM to generate three Q&A pairs.
        self.custom_prompt_template = (
            "You are an expert in extracting question and answer pairs from documents. "
            "Generate 3 Q&A pairs from the following data, formatted as a JSON list of dictionaries. "
            "Each dictionary must have keys 'question' and 'answer'. "
            "The questions should be clear and concise, and the answers must be based solely on the provided data with no external information. "
            "Do not hallucinate. \n\n"
            "Example JSON Output:\n"
            "[{'question': 'What is the capital of France?', 'answer': 'Paris'}, "
            "{'question': 'What is the highest mountain in the world?', 'answer': 'Mount Everest'}, "
            "{'question': 'What is the chemical symbol for gold?', 'answer': 'Au'}]\n\n"
            "Now, generate 3 Q&A pairs from this data:\n{data}"
        )
    
    def _setup_providers(self) -> None:
        """Configure available LLM providers and their client initialization routines."""
        self.providers: Dict[str, Dict[str, Any]] = {
            "Deepseek": {
                "client": lambda key: OpenAI(base_url="https://api.deepseek.com/v1", api_key=key) if OpenAI else None,
                "models": ["deepseek-chat"],
            },
            "OpenAI": {
                "client": lambda key: OpenAI(api_key=key) if OpenAI else None,
                "models": ["gpt-4-turbo", "gpt-3.5-turbo"],
            },
            "Groq": {
                "client": lambda key: groq.Groq(api_key=key) if groq else None,
                "models": [GROQ_MODEL],
            },
            "HuggingFace": {
                "client": lambda key: {"headers": {"Authorization": f"Bearer {key}"}},
                "models": ["gpt2", "llama-2"],
            },
        }
    
    def _setup_input_handlers(self) -> None:
        """Register handlers for different input data types."""
        self.input_handlers: Dict[str, Any] = {
            "text": self.handle_text,
            "pdf": self.handle_pdf,
            "csv": self.handle_csv,
            "api": self.handle_api,
            "db": self.handle_db,
        }
    
    def _initialize_session_state(self) -> None:
        """Initialize Streamlit session state with default configuration."""
        defaults = {
            "config": {
                "provider": "OpenAI",
                "model": "gpt-4-turbo",
                "temperature": DEFAULT_TEMPERATURE,
            },
            "api_key": "",
            "inputs": [],       # List to store input sources
            "qa_pairs": "",     # Generated Q&A pairs output
            "error_logs": [],   # To store any error messages
        }
        for key, value in defaults.items():
            if key not in st.session_state:
                st.session_state[key] = value
    
    def log_error(self, message: str) -> None:
        """Log an error message to session state and display it."""
        st.session_state.error_logs.append(message)
        st.error(message)
    
    # ----- Input Handlers -----
    def handle_text(self, text: str) -> Dict[str, Any]:
        return {"data": text, "source": "text"}
    
    def handle_pdf(self, file) -> Dict[str, Any]:
        try:
            with pdfplumber.open(file) as pdf:
                full_text = ""
                for page in pdf.pages:
                    page_text = page.extract_text() or ""
                    full_text += page_text + "\n"
                return {"data": full_text, "source": "pdf"}
        except Exception as e:
            self.log_error(f"PDF Processing Error: {e}")
            return {"data": "", "source": "pdf"}
    
    def handle_csv(self, file) -> Dict[str, Any]:
        try:
            df = pd.read_csv(file)
            # Convert the DataFrame to a JSON string
            return {"data": df.to_json(orient="records"), "source": "csv"}
        except Exception as e:
            self.log_error(f"CSV Processing Error: {e}")
            return {"data": "", "source": "csv"}
    
    def handle_api(self, config: Dict[str, str]) -> Dict[str, Any]:
        try:
            response = requests.get(config["url"], headers=config.get("headers", {}), timeout=10)
            response.raise_for_status()
            return {"data": json.dumps(response.json()), "source": "api"}
        except Exception as e:
            self.log_error(f"API Processing Error: {e}")
            return {"data": "", "source": "api"}
    
    def handle_db(self, config: Dict[str, str]) -> Dict[str, Any]:
        try:
            engine = sqlalchemy.create_engine(config["connection"])
            with engine.connect() as conn:
                result = conn.execute(sqlalchemy.text(config["query"]))
                rows = [dict(row) for row in result]
            return {"data": json.dumps(rows), "source": "db"}
        except Exception as e:
            self.log_error(f"Database Processing Error: {e}")
            return {"data": "", "source": "db"}
    
    def aggregate_inputs(self) -> str:
        """Combine all input sources into a single aggregated string."""
        aggregated_data = ""
        for item in st.session_state.inputs:
            aggregated_data += f"Source: {item.get('source', 'unknown')}\n"
            aggregated_data += item.get("data", "") + "\n\n"
        return aggregated_data.strip()
    
    def build_prompt(self) -> str:
        """
        Build the complete prompt using the custom template and aggregated inputs.
        """
        data = self.aggregate_inputs()
        prompt = self.custom_prompt_template.format(data=data)
        st.write("### Built Prompt")
        st.write(prompt)
        return prompt
    
    def generate_qa_pairs(self) -> bool:
        """
        Generate Q&A pairs by sending the built prompt to the selected LLM provider.
        """
        api_key = st.session_state.api_key
        if not api_key:
            self.log_error("API key is missing!")
            return False
        
        provider_name = st.session_state.config["provider"]
        provider_cfg = self.providers.get(provider_name)
        if not provider_cfg:
            self.log_error(f"Provider {provider_name} is not configured.")
            return False
        
        client_initializer = provider_cfg["client"]
        client = client_initializer(api_key)
        model = st.session_state.config["model"]
        temperature = st.session_state.config["temperature"]
        prompt = self.build_prompt()
        
        st.info(f"Using **{provider_name}** with model **{model}** at temperature **{temperature:.2f}**")
        try:
            if provider_name == "HuggingFace":
                response = self._huggingface_inference(client, prompt, model)
            else:
                response = self._standard_inference(client, prompt, model, temperature)
            
            st.write("### Raw API Response")
            st.write(response)
            
            qa_pairs = self._parse_response(response, provider_name)
            st.write("### Parsed Q&A Pairs")
            st.write(qa_pairs)
            
            st.session_state.qa_pairs = qa_pairs
            return True
        except Exception as e:
            self.log_error(f"Generation failed: {e}")
            return False
    
    def _standard_inference(self, client: Any, prompt: str, model: str, temperature: float) -> Any:
        """Inference method for providers using an OpenAI-compatible API."""
        try:
            st.write("Sending prompt via standard inference...")
            result = client.chat.completions.create(
                model=model,
                messages=[{"role": "user", "content": prompt}],
                temperature=temperature,
            )
            st.write("Standard inference result received.")
            return result
        except Exception as e:
            self.log_error(f"Standard Inference Error: {e}")
            return None
    
    def _huggingface_inference(self, client: Dict[str, Any], prompt: str, model: str) -> Any:
        """Inference method for the Hugging Face Inference API."""
        try:
            st.write("Sending prompt to HuggingFace API...")
            response = requests.post(
                HF_API_URL + model,
                headers=client["headers"],
                json={"inputs": prompt},
                timeout=30,
            )
            response.raise_for_status()
            st.write("HuggingFace API response received.")
            return response.json()
        except Exception as e:
            self.log_error(f"HuggingFace Inference Error: {e}")
            return None
    
    def _parse_response(self, response: Any, provider: str) -> List[Dict[str, str]]:
        """
        Parse the LLM response and return a list of Q&A pairs.
        Expects the response to be JSON formatted.
        """
        st.write("Parsing response for provider:", provider)
        try:
            if provider == "HuggingFace":
                # For HuggingFace, assume the generated text is under "generated_text"
                if isinstance(response, list) and response and "generated_text" in response[0]:
                    raw_text = response[0]["generated_text"]
                else:
                    self.log_error("Unexpected HuggingFace response format.")
                    return []
            else:
                # For OpenAI (and similar providers) assume the response is similar to:
                # response.choices[0].message.content
                if response and hasattr(response, "choices") and response.choices:
                    raw_text = response.choices[0].message.content
                else:
                    self.log_error("Unexpected response format from provider.")
                    return []
            
            # Try parsing the raw text as JSON
            try:
                qa_list = json.loads(raw_text)
                if isinstance(qa_list, list):
                    return qa_list
                else:
                    self.log_error("Parsed output is not a list.")
                    return []
            except json.JSONDecodeError as e:
                self.log_error(f"JSON Parsing Error: {e}. Raw output: {raw_text}")
                return []
        except Exception as e:
            self.log_error(f"Response Parsing Error: {e}")
            return []


# ============ UI Components ============

def config_ui(generator: QADataGenerator):
    """Display configuration options in the sidebar."""
    with st.sidebar:
        st.header("Configuration")
        provider = st.selectbox("Select Provider", list(generator.providers.keys()))
        st.session_state.config["provider"] = provider
        provider_cfg = generator.providers[provider]
        
        model = st.selectbox("Select Model", provider_cfg["models"])
        st.session_state.config["model"] = model
        
        temperature = st.slider("Temperature", 0.0, 1.0, DEFAULT_TEMPERATURE)
        st.session_state.config["temperature"] = temperature
        
        api_key = st.text_input(f"{provider} API Key", type="password")
        st.session_state.api_key = api_key

def input_ui(generator: QADataGenerator):
    """Display input data source options using tabs."""
    st.subheader("Input Data Sources")
    tabs = st.tabs(["Text", "PDF", "CSV", "API", "Database"])
    
    with tabs[0]:
        text_input = st.text_area("Enter text input", height=150)
        if st.button("Add Text Input", key="text_input"):
            if text_input.strip():
                st.session_state.inputs.append(generator.handle_text(text_input))
                st.success("Text input added!")
            else:
                st.warning("Empty text input.")
    
    with tabs[1]:
        pdf_file = st.file_uploader("Upload PDF", type=["pdf"])
        if pdf_file is not None:
            st.session_state.inputs.append(generator.handle_pdf(pdf_file))
            st.success("PDF input added!")
    
    with tabs[2]:
        csv_file = st.file_uploader("Upload CSV", type=["csv"])
        if csv_file is not None:
            st.session_state.inputs.append(generator.handle_csv(csv_file))
            st.success("CSV input added!")
    
    with tabs[3]:
        api_url = st.text_input("API Endpoint URL")
        api_headers = st.text_area("API Headers (JSON format, optional)", height=100)
        if st.button("Add API Input", key="api_input"):
            headers = {}
            try:
                if api_headers:
                    headers = json.loads(api_headers)
            except Exception as e:
                generator.log_error(f"Invalid JSON for API Headers: {e}")
            st.session_state.inputs.append(generator.handle_api({"url": api_url, "headers": headers}))
            st.success("API input added!")
    
    with tabs[4]:
        db_conn = st.text_input("Database Connection String")
        db_query = st.text_area("Database Query", height=100)
        if st.button("Add Database Input", key="db_input"):
            st.session_state.inputs.append(generator.handle_db({"connection": db_conn, "query": db_query}))
            st.success("Database input added!")

def output_ui(generator: QADataGenerator):
    """Display the generated Q&A pairs and provide a download option."""
    st.subheader("Q&A Pairs Output")
    if st.session_state.qa_pairs:
        st.write("### Generated Q&A Pairs")
        st.write(st.session_state.qa_pairs)
        st.download_button(
            "Download Output",
            json.dumps(st.session_state.qa_pairs, indent=2),
            file_name="qa_pairs.json",
            mime="application/json"
        )
    else:
        st.info("No Q&A pairs generated yet.")

def logs_ui():
    """Display error logs and debugging information in an expandable section."""
    with st.expander("Error Logs & Debug Info", expanded=False):
        if st.session_state.error_logs:
            for log in st.session_state.error_logs:
                st.write(log)
        else:
            st.write("No logs yet.")


def main():
    st.set_page_config(page_title="Advanced Q&A Synthetic Generator", layout="wide")
    st.title("Advanced Q&A Synthetic Generator")
    st.markdown(
        """
        Welcome to the Advanced Q&A Synthetic Generator. This tool extracts and generates question-answer pairs
        from various input sources. Configure your provider in the sidebar, add input data, and click the button below to generate Q&A pairs.
        """
    )
    
    # Initialize generator and display configuration UI
    generator = QADataGenerator()
    config_ui(generator)
    
    st.header("1. Input Data")
    input_ui(generator)
    if st.button("Clear All Inputs"):
        st.session_state.inputs = []
        st.success("All inputs have been cleared!")
    
    st.header("2. Generate Q&A Pairs")
    if st.button("Generate Q&A Pairs", key="generate_qa"):
        with st.spinner("Generating Q&A pairs..."):
            if generator.generate_qa_pairs():
                st.success("Q&A pairs generated successfully!")
            else:
                st.error("Q&A generation failed. Check logs for details.")
    
    st.header("3. Output")
    output_ui(generator)
    
    st.header("4. Logs & Debug Information")
    logs_ui()


if __name__ == "__main__":
    main()