Spaces:
Sleeping
Sleeping
File size: 17,543 Bytes
4018394 c608949 6bba837 253afd8 6bba837 c608949 2f242fe edd1d90 fc2842c 253afd8 fc2842c d2b7530 c608949 5f0d3d6 1de53dc d2b7530 edd1d90 d2b7530 edd1d90 4018394 1de53dc 3db2361 edd1d90 68019c9 c608949 d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 accacff edd1d90 d2b7530 edd1d90 d2b7530 c608949 edd1d90 d2b7530 edd1d90 d2b7530 c608949 edd1d90 d2b7530 edd1d90 d2b7530 68019c9 e9a68df 3db2361 e9a68df 3db2361 d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 c608949 3045f18 edd1d90 c608949 3045f18 edd1d90 d2b7530 fc2842c edd1d90 d2b7530 58e9888 edd1d90 d2b7530 edd1d90 c608949 edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 4018394 d2b7530 4018394 edd1d90 f3076fc edd1d90 d2b7530 4018394 d2b7530 4018394 c608949 edd1d90 d2b7530 c608949 edd1d90 d2b7530 c608949 edd1d90 c608949 d2b7530 edd1d90 1de53dc edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 3045f18 edd1d90 d2b7530 edd1d90 d2b7530 8cd330b edd1d90 8cd330b edd1d90 d2b7530 edd1d90 d2b7530 2f242fe edd1d90 4018394 edd1d90 2f242fe edd1d90 d2b7530 edd1d90 4018394 d2b7530 4018394 edd1d90 5f0d3d6 1de53dc edd1d90 1de53dc edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 c608949 d2b7530 c608949 d2b7530 c608949 edd1d90 3db2361 edd1d90 1de53dc 4018394 d2b7530 5f0d3d6 d2b7530 68019c9 edd1d90 68019c9 edd1d90 d2b7530 68019c9 edd1d90 d2b7530 68019c9 edd1d90 d2b7530 68019c9 f3076fc d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 68019c9 d2b7530 f3076fc edd1d90 f3076fc d2b7530 accacff 1de53dc d2b7530 f3076fc d2b7530 f3076fc d2b7530 f3076fc edd1d90 d2b7530 edd1d90 c608949 d2b7530 edd1d90 4018394 c608949 d2b7530 2f242fe d2b7530 4018394 2f242fe d2b7530 edd1d90 d2b7530 edd1d90 d2b7530 4018394 d2b7530 edd1d90 d2b7530 edd1d90 5f0d3d6 253afd8 6866cee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
import json
import ast
import requests
import streamlit as st
import pdfplumber
import pandas as pd
import sqlalchemy
from typing import Any, Dict, List, Callable
# Provider clients – ensure these libraries are installed
try:
from openai import OpenAI
except ImportError:
OpenAI = None
try:
import groq
except ImportError:
groq = None
# Hugging Face inference endpoint and defaults
HF_API_URL: str = "https://api-inference.huggingface.co/models/"
DEFAULT_TEMPERATURE: float = 0.1
GROQ_MODEL: str = "mixtral-8x7b-32768"
class QADataGenerator:
"""
A Q&A Synthetic Generator that extracts and generates question-answer pairs
from various input sources using an LLM provider.
"""
def __init__(self) -> None:
self._setup_providers()
self._setup_input_handlers()
self._initialize_session_state()
# Updated prompt template with dynamic {num_examples} parameter and escaped curly braces
self.custom_prompt_template: str = (
"You are an expert in extracting question and answer pairs from documents. "
"Generate {num_examples} Q&A pairs from the following data, formatted as a JSON list of dictionaries. "
"Each dictionary must have keys 'question' and 'answer'. "
"The questions should be clear and concise, and the answers must be based solely on the provided data with no external information. "
"Do not hallucinate. \n\n"
"Example JSON Output:\n"
"[{{'question': 'What is the capital of France?', 'answer': 'Paris'}}, "
"{{'question': 'What is the highest mountain in the world?', 'answer': 'Mount Everest'}}, "
"{{'question': 'What is the chemical symbol for gold?', 'answer': 'Au'}}]\n\n"
"Now, generate {num_examples} Q&A pairs from this data:\n{data}"
)
def _setup_providers(self) -> None:
"""Configure available LLM providers and their client initialization routines."""
self.providers: Dict[str, Dict[str, Any]] = {
"Deepseek": {
"client": lambda key: OpenAI(base_url="https://api.deepseek.com/v1", api_key=key) if OpenAI else None,
"models": ["deepseek-chat"],
},
"OpenAI": {
"client": lambda key: OpenAI(api_key=key) if OpenAI else None,
"models": ["gpt-4-turbo", "gpt-3.5-turbo"],
},
"Groq": {
"client": lambda key: groq.Groq(api_key=key) if groq else None,
"models": [GROQ_MODEL],
},
"HuggingFace": {
"client": lambda key: {"headers": {"Authorization": f"Bearer {key}"}},
"models": ["gpt2", "llama-2"],
},
}
def _setup_input_handlers(self) -> None:
"""Register handlers for different input data types."""
self.input_handlers: Dict[str, Callable[[Any], Dict[str, Any]]] = {
"text": self.handle_text,
"pdf": self.handle_pdf,
"csv": self.handle_csv,
"api": self.handle_api,
"db": self.handle_db,
}
def _initialize_session_state(self) -> None:
"""Initialize Streamlit session state with default configuration."""
defaults: Dict[str, Any] = {
"config": {
"provider": "OpenAI",
"model": "gpt-4-turbo",
"temperature": DEFAULT_TEMPERATURE,
"num_examples": 3, # Default number of Q&A pairs
},
"api_key": "",
"inputs": [], # List to store input sources
"qa_pairs": None, # Generated Q&A pairs output
"error_logs": [], # To store any error messages
}
for key, value in defaults.items():
if key not in st.session_state:
st.session_state[key] = value
def log_error(self, message: str) -> None:
"""Log an error message to session state and display it."""
st.session_state.error_logs.append(message)
st.error(message)
# ----- Input Handlers -----
def handle_text(self, text: str) -> Dict[str, Any]:
"""Process plain text input."""
return {"data": text, "source": "text"}
def handle_pdf(self, file) -> Dict[str, Any]:
"""Extract text from a PDF file."""
try:
with pdfplumber.open(file) as pdf:
full_text = "\n".join(page.extract_text() or "" for page in pdf.pages)
return {"data": full_text, "source": "pdf"}
except Exception as e:
self.log_error(f"PDF Processing Error: {e}")
return {"data": "", "source": "pdf"}
def handle_csv(self, file) -> Dict[str, Any]:
"""Process a CSV file by converting it to JSON."""
try:
df = pd.read_csv(file)
json_data = df.to_json(orient="records")
return {"data": json_data, "source": "csv"}
except Exception as e:
self.log_error(f"CSV Processing Error: {e}")
return {"data": "", "source": "csv"}
def handle_api(self, config: Dict[str, str]) -> Dict[str, Any]:
"""Fetch data from an API endpoint."""
try:
response = requests.get(config["url"], headers=config.get("headers", {}), timeout=10)
response.raise_for_status()
return {"data": json.dumps(response.json()), "source": "api"}
except Exception as e:
self.log_error(f"API Processing Error: {e}")
return {"data": "", "source": "api"}
def handle_db(self, config: Dict[str, str]) -> Dict[str, Any]:
"""Query a database using the provided connection string and SQL query."""
try:
engine = sqlalchemy.create_engine(config["connection"])
with engine.connect() as conn:
result = conn.execute(sqlalchemy.text(config["query"]))
rows = [dict(row) for row in result]
return {"data": json.dumps(rows), "source": "db"}
except Exception as e:
self.log_error(f"Database Processing Error: {e}")
return {"data": "", "source": "db"}
def aggregate_inputs(self) -> str:
"""Combine all input sources into a single aggregated string."""
aggregated_data = ""
for item in st.session_state.inputs:
aggregated_data += f"Source: {item.get('source', 'unknown')}\n"
aggregated_data += item.get("data", "") + "\n\n"
return aggregated_data.strip()
def build_prompt(self) -> str:
"""
Build the complete prompt using the custom template, aggregated inputs,
and the number of examples.
"""
data = self.aggregate_inputs()
num_examples = st.session_state.config.get("num_examples", 3)
prompt = self.custom_prompt_template.format(data=data, num_examples=num_examples)
st.write("### Built Prompt")
st.write(prompt)
return prompt
def generate_qa_pairs(self) -> bool:
"""
Generate Q&A pairs by sending the built prompt to the selected LLM provider.
"""
api_key: str = st.session_state.api_key
if not api_key:
self.log_error("API key is missing!")
return False
provider_name: str = st.session_state.config["provider"]
provider_cfg: Dict[str, Any] = self.providers.get(provider_name, {})
if not provider_cfg:
self.log_error(f"Provider {provider_name} is not configured.")
return False
client_initializer: Callable[[str], Any] = provider_cfg["client"]
client = client_initializer(api_key)
model: str = st.session_state.config["model"]
temperature: float = st.session_state.config["temperature"]
prompt: str = self.build_prompt()
st.info(f"Using **{provider_name}** with model **{model}** at temperature **{temperature:.2f}**")
try:
if provider_name == "HuggingFace":
response = self._huggingface_inference(client, prompt, model)
else:
response = self._standard_inference(client, prompt, model, temperature)
st.write("### Raw API Response")
st.write(response)
qa_pairs = self._parse_response(response, provider_name)
st.write("### Parsed Q&A Pairs")
st.write(qa_pairs)
st.session_state.qa_pairs = qa_pairs
return True
except Exception as e:
self.log_error(f"Generation failed: {e}")
return False
def _standard_inference(self, client: Any, prompt: str, model: str, temperature: float) -> Any:
"""Inference method for providers using an OpenAI-compatible API."""
try:
st.write("Sending prompt via standard inference...")
result = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
)
st.write("Standard inference result received.")
return result
except Exception as e:
self.log_error(f"Standard Inference Error: {e}")
return None
def _huggingface_inference(self, client: Dict[str, Any], prompt: str, model: str) -> Any:
"""Inference method for the Hugging Face Inference API."""
try:
st.write("Sending prompt to HuggingFace API...")
response = requests.post(
HF_API_URL + model,
headers=client["headers"],
json={"inputs": prompt},
timeout=30,
)
response.raise_for_status()
st.write("HuggingFace API response received.")
return response.json()
except Exception as e:
self.log_error(f"HuggingFace Inference Error: {e}")
return None
def _parse_response(self, response: Any, provider: str) -> List[Dict[str, str]]:
"""
Parse the LLM response and return a list of Q&A pairs.
Expects the response to be JSON formatted; if JSON decoding fails,
uses ast.literal_eval as a fallback.
"""
st.write("Parsing response for provider:", provider)
try:
if provider == "HuggingFace":
if isinstance(response, list) and response and "generated_text" in response[0]:
raw_text = response[0]["generated_text"]
else:
self.log_error("Unexpected HuggingFace response format.")
return []
else:
if response and hasattr(response, "choices") and response.choices:
raw_text = response.choices[0].message.content
else:
self.log_error("Unexpected response format from provider.")
return []
try:
qa_list = json.loads(raw_text)
except json.JSONDecodeError as e:
self.log_error(f"JSON Parsing Error: {e}. Attempting fallback with ast.literal_eval. Raw output: {raw_text}")
try:
qa_list = ast.literal_eval(raw_text)
except Exception as e2:
self.log_error(f"ast.literal_eval failed: {e2}")
return []
if isinstance(qa_list, list):
return qa_list
else:
self.log_error("Parsed output is not a list.")
return []
except Exception as e:
self.log_error(f"Response Parsing Error: {e}")
return []
# ============ UI Components ============
def config_ui(generator: QADataGenerator) -> None:
"""Display configuration options in the sidebar."""
with st.sidebar:
st.header("Configuration")
provider = st.selectbox("Select Provider", list(generator.providers.keys()))
st.session_state.config["provider"] = provider
provider_cfg = generator.providers[provider]
model = st.selectbox("Select Model", provider_cfg["models"])
st.session_state.config["model"] = model
temperature = st.slider("Temperature", 0.0, 1.0, DEFAULT_TEMPERATURE)
st.session_state.config["temperature"] = temperature
num_examples = st.number_input("Number of Q&A Pairs", min_value=1, max_value=10, value=3, step=1)
st.session_state.config["num_examples"] = num_examples
api_key = st.text_input(f"{provider} API Key", type="password")
st.session_state.api_key = api_key
def input_ui(generator: QADataGenerator) -> None:
"""Display input data source options using tabs."""
st.subheader("Input Data Sources")
tabs = st.tabs(["Text", "PDF", "CSV", "API", "Database"])
with tabs[0]:
text_input = st.text_area("Enter text input", height=150)
if st.button("Add Text Input", key="text_input"):
if text_input.strip():
st.session_state.inputs.append(generator.handle_text(text_input))
st.success("Text input added!")
else:
st.warning("Empty text input.")
with tabs[1]:
pdf_file = st.file_uploader("Upload PDF", type=["pdf"])
if pdf_file is not None:
st.session_state.inputs.append(generator.handle_pdf(pdf_file))
st.success("PDF input added!")
with tabs[2]:
csv_file = st.file_uploader("Upload CSV", type=["csv"])
if csv_file is not None:
st.session_state.inputs.append(generator.handle_csv(csv_file))
st.success("CSV input added!")
with tabs[3]:
api_url = st.text_input("API Endpoint URL")
api_headers = st.text_area("API Headers (JSON format, optional)", height=100)
if st.button("Add API Input", key="api_input"):
headers = {}
try:
if api_headers:
headers = json.loads(api_headers)
except Exception as e:
generator.log_error(f"Invalid JSON for API Headers: {e}")
st.session_state.inputs.append(generator.handle_api({"url": api_url, "headers": headers}))
st.success("API input added!")
with tabs[4]:
db_conn = st.text_input("Database Connection String")
db_query = st.text_area("Database Query", height=100)
if st.button("Add Database Input", key="db_input"):
st.session_state.inputs.append(generator.handle_db({"connection": db_conn, "query": db_query}))
st.success("Database input added!")
def output_ui(generator: QADataGenerator) -> None:
"""Display the generated Q&A pairs and provide download options."""
st.subheader("Q&A Pairs Output")
if st.session_state.qa_pairs:
st.write("### Generated Q&A Pairs")
st.write(st.session_state.qa_pairs)
# Download as JSON
st.download_button(
"Download as JSON",
json.dumps(st.session_state.qa_pairs, indent=2),
file_name="qa_pairs.json",
mime="application/json"
)
# Download as CSV
try:
df = pd.DataFrame(st.session_state.qa_pairs)
csv_data = df.to_csv(index=False)
st.download_button(
"Download as CSV",
csv_data,
file_name="qa_pairs.csv",
mime="text/csv"
)
except Exception as e:
st.error(f"Error generating CSV: {e}")
else:
st.info("No Q&A pairs generated yet.")
def logs_ui() -> None:
"""Display error logs and debugging information in an expandable section."""
with st.expander("Error Logs & Debug Info", expanded=False):
if st.session_state.error_logs:
for log in st.session_state.error_logs:
st.write(log)
else:
st.write("No logs yet.")
def main() -> None:
"""Main Streamlit application entry point."""
st.set_page_config(page_title="Advanced Q&A Synthetic Generator", layout="wide")
st.title("Advanced Q&A Synthetic Generator")
st.markdown(
"""
Welcome to the Advanced Q&A Synthetic Generator. This tool extracts and generates question-answer pairs
from various input sources. Configure your provider in the sidebar, add input data, and click the button below to generate Q&A pairs.
"""
)
# Initialize generator and display configuration UI
generator = QADataGenerator()
config_ui(generator)
st.header("1. Input Data")
input_ui(generator)
if st.button("Clear All Inputs"):
st.session_state.inputs = []
st.success("All inputs have been cleared!")
st.header("2. Generate Q&A Pairs")
if st.button("Generate Q&A Pairs", key="generate_qa"):
with st.spinner("Generating Q&A pairs..."):
if generator.generate_qa_pairs():
st.success("Q&A pairs generated successfully!")
else:
st.error("Q&A generation failed. Check logs for details.")
st.header("3. Output")
output_ui(generator)
st.header("4. Logs & Debug Information")
logs_ui()
if __name__ == "__main__":
main()
|