sythenticdata / app.py
mgbam's picture
Update app.py
fc2842c verified
raw
history blame
15.6 kB
import json
import requests
import streamlit as st
import pdfplumber
import pandas as pd
import sqlalchemy
import time
import concurrent.futures
from typing import Any, Dict, List
# Provider clients (make sure you have these installed)
try:
from openai import OpenAI
except ImportError:
OpenAI = None
try:
import groq
except ImportError:
groq = None
# Hugging Face inference URL
HF_API_URL = "https://api-inference.huggingface.co/models/"
DEFAULT_TEMPERATURE = 0.1
GROQ_MODEL = "mixtral-8x7b-32768"
class AdvancedSyntheticDataGenerator:
"""
Advanced Synthetic Data Generator
This class handles multiple input sources, advanced prompt engineering, and
supports multiple LLM providers to generate synthetic data.
"""
def __init__(self) -> None:
self._setup_providers()
self._setup_input_handlers()
self._initialize_session_state()
# A customizable prompt template (you can modify it via the UI)
self.custom_prompt_template = (
"You are an expert synthetic data generator. "
"Given the data below and following the instructions provided, generate high-quality, diverse synthetic data. "
"Ensure the output adheres to the specified format.\n\n"
"-------------------------\n"
"Data:\n{data}\n\n"
"Instructions:\n{instructions}\n\n"
"Output Format: {format}\n"
"-------------------------\n"
)
def _setup_providers(self) -> None:
"""Configure available LLM providers and their initialization routines."""
self.providers: Dict[str, Dict[str, Any]] = {
"Deepseek": {
"client": lambda key: OpenAI(base_url="https://api.deepseek.com/v1", api_key=key) if OpenAI else None,
"models": ["deepseek-chat"],
},
"OpenAI": {
"client": lambda key: OpenAI(api_key=key) if OpenAI else None,
"models": ["gpt-4-turbo", "gpt-3.5-turbo"],
},
"Groq": {
"client": lambda key: groq.Groq(api_key=key) if groq else None,
"models": [GROQ_MODEL],
},
"HuggingFace": {
"client": lambda key: {"headers": {"Authorization": f"Bearer {key}"}},
"models": ["gpt2", "llama-2"],
},
}
def _setup_input_handlers(self) -> None:
"""Register handlers for different input data types."""
self.input_handlers: Dict[str, Any] = {
"text": self.handle_text,
"pdf": self.handle_pdf,
"csv": self.handle_csv,
"api": self.handle_api,
"db": self.handle_db,
}
def _initialize_session_state(self) -> None:
"""Initialize Streamlit session state with default configuration."""
defaults = {
"config": {
"provider": "OpenAI",
"model": "gpt-4-turbo",
"temperature": DEFAULT_TEMPERATURE,
"output_format": "plain_text", # Options: plain_text, json, csv
},
"api_key": "",
"inputs": [], # A list to store input sources
"instructions": "", # Custom instructions for data generation
"synthetic_data": "", # The generated output
"error_logs": [], # Any errors that occur during processing
}
for key, value in defaults.items():
if key not in st.session_state:
st.session_state[key] = value
def log_error(self, message: str) -> None:
"""Log an error message both to the session state and in the UI."""
st.session_state.error_logs.append(message)
st.error(message)
# ===== INPUT HANDLERS =====
def handle_text(self, text: str) -> Dict[str, Any]:
return {"data": text, "source": "text"}
def handle_pdf(self, file) -> Dict[str, Any]:
try:
with pdfplumber.open(file) as pdf:
full_text = ""
for page in pdf.pages:
page_text = page.extract_text() or ""
full_text += page_text + "\n"
return {"data": full_text, "source": "pdf"}
except Exception as e:
self.log_error(f"PDF Processing Error: {e}")
return {"data": "", "source": "pdf"}
def handle_csv(self, file) -> Dict[str, Any]:
try:
df = pd.read_csv(file)
# For simplicity, we convert the dataframe to JSON.
return {"data": df.to_json(orient="records"), "source": "csv"}
except Exception as e:
self.log_error(f"CSV Processing Error: {e}")
return {"data": "", "source": "csv"}
def handle_api(self, config: Dict[str, str]) -> Dict[str, Any]:
try:
response = requests.get(config["url"], headers=config.get("headers", {}), timeout=10)
response.raise_for_status()
return {"data": json.dumps(response.json()), "source": "api"}
except Exception as e:
self.log_error(f"API Processing Error: {e}")
return {"data": "", "source": "api"}
def handle_db(self, config: Dict[str, str]) -> Dict[str, Any]:
try:
engine = sqlalchemy.create_engine(config["connection"])
with engine.connect() as conn:
result = conn.execute(sqlalchemy.text(config["query"]))
rows = [dict(row) for row in result]
return {"data": json.dumps(rows), "source": "db"}
except Exception as e:
self.log_error(f"Database Processing Error: {e}")
return {"data": "", "source": "db"}
def aggregate_inputs(self) -> str:
"""Combine all input sources into a single data string."""
aggregated_data = ""
for item in st.session_state.inputs:
aggregated_data += f"Source: {item.get('source', 'unknown')}\n"
aggregated_data += item.get("data", "") + "\n\n"
return aggregated_data.strip()
def build_prompt(self) -> str:
"""
Build the complete prompt by combining the aggregated input data with
custom instructions and the desired output format.
"""
aggregated_data = self.aggregate_inputs()
instructions = st.session_state.instructions or "Generate diverse, coherent synthetic data."
output_format = st.session_state.config.get("output_format", "plain_text")
return self.custom_prompt_template.format(
data=aggregated_data, instructions=instructions, format=output_format
)
def generate_synthetic_data(self) -> bool:
"""
Generate synthetic data by sending the built prompt to the selected LLM provider.
Returns True if generation succeeds.
"""
api_key = st.session_state.api_key
if not api_key:
self.log_error("API key is missing!")
return False
provider_name = st.session_state.config["provider"]
provider_cfg = self.providers.get(provider_name)
if not provider_cfg:
self.log_error(f"Provider {provider_name} is not configured.")
return False
client_initializer = provider_cfg["client"]
client = client_initializer(api_key)
model = st.session_state.config["model"]
temperature = st.session_state.config["temperature"]
prompt = self.build_prompt()
st.info(f"Using provider {provider_name} with model {model} at temperature {temperature:.2f}")
# (Optionally) simulate asynchronous processing with a thread pool if needed.
try:
if provider_name == "HuggingFace":
response = self._huggingface_inference(client, prompt, model)
else:
response = self._standard_inference(client, prompt, model, temperature)
synthetic_data = self._parse_response(response, provider_name)
st.session_state.synthetic_data = synthetic_data
return True
except Exception as e:
self.log_error(f"Generation failed: {e}")
return False
def _standard_inference(self, client: Any, prompt: str, model: str, temperature: float) -> Any:
"""
Inference method for providers using an OpenAI-compatible API.
"""
try:
result = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
)
return result
except Exception as e:
self.log_error(f"Standard Inference Error: {e}")
return None
def _huggingface_inference(self, client: Dict[str, Any], prompt: str, model: str) -> Any:
"""
Inference method for the Hugging Face Inference API.
"""
try:
response = requests.post(
HF_API_URL + model,
headers=client["headers"],
json={"inputs": prompt},
timeout=30,
)
response.raise_for_status()
return response.json()
except Exception as e:
self.log_error(f"HuggingFace Inference Error: {e}")
return None
def _parse_response(self, response: Any, provider: str) -> str:
"""
Parse the LLM response into a synthetic data string.
"""
try:
if provider == "HuggingFace":
if isinstance(response, list) and "generated_text" in response[0]:
return response[0]["generated_text"]
else:
self.log_error("Unexpected HuggingFace response format.")
return ""
else:
if response and hasattr(response, "choices") and response.choices:
return response.choices[0].message.content
else:
self.log_error("Unexpected response format.")
return ""
except Exception as e:
self.log_error(f"Response Parsing Error: {e}")
return ""
# ===== ADVANCED UI COMPONENTS =====
def advanced_config_ui(generator: AdvancedSyntheticDataGenerator):
"""Advanced configuration options in the sidebar."""
with st.sidebar:
st.header("Advanced Configuration")
provider = st.selectbox("Select Provider", list(generator.providers.keys()))
st.session_state.config["provider"] = provider
provider_cfg = generator.providers[provider]
model = st.selectbox("Select Model", provider_cfg["models"])
st.session_state.config["model"] = model
temperature = st.slider("Temperature", 0.0, 1.0, DEFAULT_TEMPERATURE)
st.session_state.config["temperature"] = temperature
output_format = st.radio("Output Format", ["plain_text", "json", "csv"])
st.session_state.config["output_format"] = output_format
api_key = st.text_input(f"{provider} API Key", type="password")
st.session_state.api_key = api_key
instructions = st.text_area("Custom Instructions",
"Generate diverse, coherent synthetic data based on the input sources.",
height=100)
st.session_state.instructions = instructions
def advanced_input_ui(generator: AdvancedSyntheticDataGenerator):
"""UI for adding input sources using tabs."""
st.header("Input Data Sources")
tabs = st.tabs(["Text", "PDF", "CSV", "API", "Database"])
with tabs[0]:
text_input = st.text_area("Enter text input", height=150)
if st.button("Add Text Input", key="text_input"):
if text_input.strip():
st.session_state.inputs.append(generator.handle_text(text_input))
st.success("Text input added!")
with tabs[1]:
pdf_file = st.file_uploader("Upload PDF", type=["pdf"])
if pdf_file is not None:
st.session_state.inputs.append(generator.handle_pdf(pdf_file))
st.success("PDF input added!")
with tabs[2]:
csv_file = st.file_uploader("Upload CSV", type=["csv"])
if csv_file is not None:
st.session_state.inputs.append(generator.handle_csv(csv_file))
st.success("CSV input added!")
with tabs[3]:
api_url = st.text_input("API Endpoint URL")
api_headers = st.text_area("API Headers (JSON format, optional)", height=100)
if st.button("Add API Input", key="api_input"):
headers = {}
try:
if api_headers:
headers = json.loads(api_headers)
except Exception as e:
generator.log_error(f"Invalid JSON for API Headers: {e}")
st.session_state.inputs.append(generator.handle_api({"url": api_url, "headers": headers}))
st.success("API input added!")
with tabs[4]:
db_conn = st.text_input("Database Connection String")
db_query = st.text_area("Database Query", height=100)
if st.button("Add Database Input", key="db_input"):
st.session_state.inputs.append(generator.handle_db({"connection": db_conn, "query": db_query}))
st.success("Database input added!")
def advanced_output_ui(generator: AdvancedSyntheticDataGenerator):
"""Display the generated synthetic data with various output options."""
st.header("Synthetic Data Output")
if st.session_state.synthetic_data:
output_format = st.session_state.config.get("output_format", "plain_text")
if output_format == "json":
try:
json_output = json.loads(st.session_state.synthetic_data)
st.json(json_output)
except Exception:
st.text_area("Output", st.session_state.synthetic_data, height=300)
else:
st.text_area("Output", st.session_state.synthetic_data, height=300)
st.download_button("Download Output", st.session_state.synthetic_data,
file_name="synthetic_data.txt", mime="text/plain")
else:
st.info("No synthetic data generated yet.")
def advanced_logs_ui():
"""Display error logs and debug information in an expandable section."""
with st.expander("Error Logs & Debug Info", expanded=False):
if st.session_state.error_logs:
for log in st.session_state.error_logs:
st.write(log)
else:
st.write("No logs yet.")
# ===== MAIN APPLICATION =====
def main() -> None:
st.set_page_config(page_title="Advanced Synthetic Data Generator", layout="wide")
generator = AdvancedSyntheticDataGenerator()
advanced_config_ui(generator)
# Create main tabs for Input, Output, and Logs
main_tabs = st.tabs(["Input", "Output", "Logs"])
with main_tabs[0]:
advanced_input_ui(generator)
if st.button("Clear Inputs"):
st.session_state.inputs = []
st.success("Inputs cleared!")
with main_tabs[1]:
if st.button("Generate Synthetic Data"):
with st.spinner("Generating synthetic data..."):
if generator.generate_synthetic_data():
st.success("Data generated successfully!")
else:
st.error("Data generation failed. Check logs for details.")
advanced_output_ui(generator)
with main_tabs[2]:
advanced_logs_ui()
if __name__ == "__main__":
main()